Skip to main content
Log in

Electronic structure of nonstoichiometric compounds in the coherent potential approximation

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We formulate and implement a method for electronic structure calculations based on the coherent potential approximation. This method provides an accurate description for nonstoichiometric compounds with the disordered location of vacancies. In the essence of its formulation, the method is similar to the implementation of the local electron density approximation in combination with the dynamical mean field theory (LDA + DMFT) and, hence, it can be easily incorporated in the latter approach. We study the evolution of the electronic structure of titanium dioxide TiO2 − δ (rutile) with the growth of nonstoichiometry in the oxygen sublattice. The results of the calculations are compared to the experimental data on the photoemission spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  ADS  Google Scholar 

  2. A. Bansil, Phys. Rev. B 20, 4025 (1979); J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21, 3222 (1980); A. J. Pindor, W. M. Temmerman, and B. L. Györffy, J. Phys. F: Met. Phys. 13, 1627 (1983); Z. Szotek, B. L. Györffy, G. M. Stocks, and W. M. Temmerman, J. Phys. F: Met. Phys. 14, 2571 (1984); A. Gonis and A. J. Freeman, Phys. Rev. B 29, 4277 (1984); D. D. Johnson, D. M. Nicholson, F. J. Pinski, et al., Phys. Rev. Lett. 56, 2088 (1986); H. Akai and P. H. Dederichs, Phys. Rev. B 47, 8739 (1993); I. A. Abrikosov and H. L. Skriver, Phys. Rev. B 47, 16532 (1993); I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, et al., Phys. Rev. Lett. 76, 4203 (1996); I. A. Abrikosov and B. Johansson, Phys. Rev. B 57, 14164 (1998); L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87, 156401 (2001); H. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B 79, 224201 (2009); H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74, 096501 (2011).

    Article  ADS  Google Scholar 

  3. Y. Matsumoto, M. Murakami, T. Shono, et al., Science 291, 854 (2001); L. Sangaletti, M. C. Mozzati, P. Galinetto, et al., J. Phys.: Condens. Matter 18, 7643 (2006).

    Article  ADS  Google Scholar 

  4. T. Dietl, Nature Mater. 9, 965 (2010).

    Article  ADS  Google Scholar 

  5. K. Maeda and K. Domen, J. Phys. Chem. Lett. 7, 2655 (2010).

    Article  Google Scholar 

  6. N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B 73, 132404 (2006).

    Article  ADS  Google Scholar 

  7. U. Diebold, Nature Chem. 3, 271 (2011).

    Article  ADS  Google Scholar 

  8. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  9. J. Minár, L. Chioncel, A. Perlov, et al., Phys. Rev. B 72, 045125 (2005).

    Article  ADS  Google Scholar 

  10. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  11. S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).

    Article  ADS  Google Scholar 

  12. D. C. Cronemeyer, Phys. Rev. 87, 876 (1952).

    Article  ADS  Google Scholar 

  13. Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).

    Article  ADS  Google Scholar 

  14. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

    Article  ADS  Google Scholar 

  15. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, et al., Phys. Rev. B 71, 125119 (2005).

    Article  ADS  Google Scholar 

  16. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  17. D. C. Cronemeyer, Phys. Rev. 113, 1222 (1959).

    Article  ADS  Google Scholar 

  18. A. K. Ghosh, F. G. Wakim, and R. R. Addiss, Jr., Phys. Rev. 184, 979 (1969).

    Article  ADS  Google Scholar 

  19. V. E. Henrich and R. L. Kurtz, Phys. Rev. B 23, 6280 (1981).

    Article  ADS  Google Scholar 

  20. T. Caruso, C. Lenardi, T. Mazza, et al., Surf. Sci. 601, 2688 (2007); L. Fleming, C. C. Fulton, G. Lucovsky, et al., J. Appl. Phys. 102, 033707 (2007); A. G. Thomas, W. R. Flavell, A. K. Mallick, et al., Phys. Rev. B 75, 035105 (2007); M. Nolan, S. D. Elliott, J. S. Mulley, et al., Phys. Rev. B 77, 235424 (2008); S. Wendt, P. T. Sprunger, E. Lira, et al., Science 320, 1755 (2008).

    Article  ADS  Google Scholar 

  21. A. K. See and R. A. Bartynski, J. Vac. Sci. Technol. A 10, 2591 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korotin.

Additional information

Original Russian Text © M.A. Korotin, N.A. Skorikov, V.M. Zainullina, E.Z. Kurmaev, A.V. Lukoyanov, V.I. Anisimov, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 11, pp. 884–889.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotin, M.A., Skorikov, N.A., Zainullina, V.M. et al. Electronic structure of nonstoichiometric compounds in the coherent potential approximation. Jetp Lett. 94, 806–810 (2012). https://doi.org/10.1134/S0021364011230068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011230068

Keywords

Navigation