Skip to main content
Log in

Hamiltonian form and solitary waves of the spatial Dysthe equations

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The spatial Dysthe equations describe the envelope evolution of the free-surface and potential of gravity waves in deep waters. Their Hamiltonian structure and new invariants are unveiled by means of a gauge transformation to a new canonical form of the evolution equations. An accurate Fourier-type spectral scheme is used to solve for the wave dynamics and validate the new conservation laws, which are satisfied up to machine precision. Further, traveling waves are numerically constructed using the Petviashvili method. It is shown that their collision appears inelastic, suggesting the non-integrability of the Dysthe equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 1990 (1968).

    Google Scholar 

  2. V. E. Zakharov, Eur. J. Mech. B: Fluids 18, 327 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. K. B. Dysthe, Proc. R. Soc. London A 369, 105 (1979).

    Article  ADS  MATH  Google Scholar 

  4. P. A. E. M. Janssen, J. Fluid Mech. 126, 1 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. J. Hogan, Proc. R. Soc. A 402 (1823), 359 (1985).

    Article  ADS  MATH  Google Scholar 

  6. O. Gramstad and K. Trulsen, J. Fluid Mech. 670, 404 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V. P. Krasitskii, J. Fluid Mech. 272, 1 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V. E. Zakharov and A. I. Dyachenko, Eur. J. Mech. B: Fluids 29, 127 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. E. Lo and C. C. Mei, J. Fluid Mech. 150, 395 (1985).

    Article  ADS  MATH  Google Scholar 

  10. E. Kit and L. Shemer, J. Fluid Mech. 450, 201 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. V. I. Petviashvili, Sov. J. Plasma Phys. 2, 469 (1976).

    ADS  Google Scholar 

  12. T. I. Lakoba and J. Yang, J. Comp. Phys. 226, 1668 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010).

    Book  MATH  Google Scholar 

  14. M. Colin and M. Ohta, Ann. I. H. Poincaré 23, 753 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J. Wyller, T. Fla, and J. J. Rasmussen, Phys. Scripta 57, 427 (1998).

    Article  ADS  Google Scholar 

  16. T. R. Akylas, J. Fluid Mech. 198, 387 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. Clamond and J. Grue, J. Fluid. Mech. 447, 337 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fedele.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedele, F., Dutykh, D. Hamiltonian form and solitary waves of the spatial Dysthe equations. Jetp Lett. 94, 840–844 (2012). https://doi.org/10.1134/S0021364011240039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011240039

Keywords

Navigation