Skip to main content
Log in

Electrohydrodynamics of a Cone–Jet Flow at a High Relative Permittivity

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We have proposed a new solution of the electrohydrodynamic equations describing a novel cone–jet flow structure formed at a conductive liquid meniscus in an electric field. Focusing on the liquids characterized by a high relative permittivity and using the slender body approximation, the cone–jet transition profiles and their characteristic radii are predicted in relation to the material parameters. The stable value of the cone angle is obtained using the Onsager’s principle of maximum entropy production. Three different regimes of the cone–jet flow behavior are identified depending on the relative importance of capillary, viscous and inertial stress contributions. The presented complete analytical solutions for the cone–jet transition zone and the far jet region yield several different laws of algebraic decrease for the radius, surface charge, and electric field of the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Fernández de la Mora, Ann. Rev. Fluid Mech. 39, 217 (2007).

    Article  ADS  Google Scholar 

  2. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech. 41, 43 (2007).

    Article  Google Scholar 

  3. G. I. Taylor, Proc. R. Soc. London A 280, 383 (1964).

    Article  ADS  MATH  Google Scholar 

  4. R. T. Collins, J. J. Jones, M. T. Harris, and O. A. Basaran, Nature Phys. 4, 149 (2008).

    Article  ADS  Google Scholar 

  5. N. Kirichenko, I. V. Petryanov-Sokolov, N. N. Suprun, and A. A. Shutov, Sov. Phys. Dokl. 31, 611 (1986).

    ADS  Google Scholar 

  6. J. J. Feng, Phys. Fluids 14, 3912 (2002).

    Article  ADS  Google Scholar 

  7. A. M. Gañán-Calvo, Phys. Rev. Lett. 79, 217 (1997).

    Article  ADS  Google Scholar 

  8. F. J. Higuera, J. Fluid Mech. 484, 303 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. V. Subbotin, JETP Lett. 100, 657 (2014).

    Article  ADS  Google Scholar 

  10. A. V. Subbotin and A. N. Semenov, Proc. R. Soc. London A 471, 20150290 (2015).

    Article  ADS  Google Scholar 

  11. D. A. Saville, Ann. Rev. Fluid Mech. 29, 27 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Onsager, Phys. Rev. 37, 405 (1931).

    Article  ADS  Google Scholar 

  13. L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Doi, J. Phys.: Condens Matter 23, 284118 (2011).

    MathSciNet  Google Scholar 

  15. P. Županović, D. Kuić, Ž. B. Lovsić, D. Petrov, D. Juretić, and M. Brumen, Entropy 12, 996 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. H. Ziegler, in Progress in Solid Mechanics, Ed. by I. N. Sneddon and R. Hill (North-Holland, Amsterdam, 1963), Vol. 4.

  17. L. M. Martyushev and V. D. Seleznev, Phys. Rep. 426, 1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Wang, M. K. Tan, D. B. Go, and H.-C. Chang, Europhys. Lett. 99, 64003 (2012).

    Article  ADS  Google Scholar 

  19. I. Greenfeld, K. Fezzaa, M. H. Rafailovich, and E. Zussman, Macromolecules 45, 3616 (2012).

    Article  ADS  Google Scholar 

  20. M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, and N. J. Wagner, Polymer 49, 2924 (2008).

    Article  Google Scholar 

  21. A. Subbotin, R. Stepanyan, A. Chiche, J. J. M. Slot, and G. ten Brinke, Phys. Fluids 25, 103101 (2013).

    Article  ADS  Google Scholar 

  22. L. M. Bellan, H. G. Craighead, and J. P. Hinestroza, J. Appl. Phys. 102, 094308 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Subbotin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotin, A.V., Semenov, A.N. Electrohydrodynamics of a Cone–Jet Flow at a High Relative Permittivity. Jetp Lett. 102, 815–820 (2015). https://doi.org/10.1134/S0021364015240121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015240121

Keywords

Navigation