Skip to main content
Log in

High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A novel type of a plasmonic sensor based on a magnetophotonic plasmonic heterostructure with an ultrahigh-Q resonance is considered. A magnetoplasmonic resonance with an angular width of 0.06°, which corresponds to a Q factor of 700 and is a record value for magnetoplasmonic sensors, is experimentally demonstrated. It is shown that, owing to the excitation of long-propagation-range plasmons, the transverse magneto-optical Kerr effect is considerably enhanced and, thus, the sensitivity of the magnetoplasmonic sensor to variations in the refractive index increases to 18 RIU–1, where RIU is the refractive index unit. Numerical calculations indicate that the parameters of the magnetoplasmonic structure can be further optimized to attain sensitivities up to 5 × 103 RIU–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Homola, Chem. Rev. 108, 462 (2008).

    Article  Google Scholar 

  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, Nat. Mater. 7, 442 (2008).

    Article  ADS  Google Scholar 

  3. R. Slavik and J. Homola, Sens. Actuators B: Chem. 123, 10 (2007).

    Article  Google Scholar 

  4. V. N. Konopsky, D. V. Basmanov, E. V. Alieva, D. I. Dolgy, E. D. Olshansky, S. K. Sekatskii, and G. Dietler, New J. Phys. 11, 063049 (2009).

    Article  ADS  Google Scholar 

  5. E. V. Alieva, V. N. Konopsky, D. V. Basmanov, S. K. Sekatskii, and G. Dietler, Opt. Commun. 309, 148 (2013).

    Article  ADS  Google Scholar 

  6. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D: Appl. Phys. 46, 125107 (2013).

    Article  ADS  Google Scholar 

  7. V. N. Konopsky and E. V. Alieva, Phys. Rev. Lett. 97, 253904 (2006).

    Article  ADS  Google Scholar 

  8. V. N. Konopsky, New J. Phys. 12, 093006 (2010).

    Article  ADS  Google Scholar 

  9. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, Berlin, 1988).

    Google Scholar 

  10. B. Sepúlveda, L. M. Lechuga, and G. Armelles, J. Lightwave Technol. 24, 945 (2006).

    Article  ADS  Google Scholar 

  11. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, Opt. Lett. 31, 1085 (2006).

    Article  ADS  Google Scholar 

  12. D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, J. Appl. Phys. 108, 054502 (2010).

    Article  ADS  Google Scholar 

  13. N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, Nat. Commun. 6, 6150 (2015).

    Article  ADS  Google Scholar 

  14. S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gäspär, and E. Gheorghiu, Biosens. Bioelectron. 63, 525 (2015).

    Article  Google Scholar 

  15. M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, Biosens. Bioelectron. 58, 114 (2014).

    Article  Google Scholar 

  16. A. A. Grunin, I. R. Mukha, A. V. Chetvertukhin, and A. A. Fedyanin, J. Magn. Magn. Mater. (2016).

    Google Scholar 

  17. N. E. Khokhlov et al., J. Phys. D: Appl. Phys. 48, 095001 (2015).

    Article  ADS  Google Scholar 

  18. N. A. Gusev, V. I. Belotelov, and A. K. Zvezdin, Opt. Lett. 39, 4108 (2014).

    Article  ADS  Google Scholar 

  19. B. L. Johnson and H. H. Shiau, J. Phys.: Condens. Matter 20, 335217 (2008).

    Google Scholar 

  20. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Nature Photon. 4, 107 (2010).

    Article  ADS  Google Scholar 

  21. V. I. Belotelov, L. E. Kreilkamp, and A. N. Kalish, Phys. Rev. B 89, 045118 (2014).

    Article  ADS  Google Scholar 

  22. A. P. Sukhorukov, D. O. Ignatyeva, and A. N. Kalish, J. Infrared Millim. Terahertz Waves 32, 1223 (2011).

    Article  Google Scholar 

  23. A. N. Kalish, D. O. Ignatyeva, V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. V. Gopal, M. Bayer, and A. P. Sukhorukov, Laser Phys. 24, 094006 (2014).

    Article  ADS  Google Scholar 

  24. D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, Sci. Rep. 6, 28077 (2016).

    Article  ADS  Google Scholar 

  25. R. V. Andaloro, R. T. Deck, and H. J. Simon, J. Opt. Soc. Am. 22, 1512 (2005).

    Article  ADS  Google Scholar 

  26. V. N. Konopsky and E. V. Alieva, Opt. Lett. 34, 479 (2009).

    Article  ADS  Google Scholar 

  27. H. J. Simon, R. V. Andaloro, and R. T. Deck, Opt. Lett. 32, 1590 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Ignatyeva.

Additional information

Original Russian Text © D.O. Ignatyeva, P.O. Kapralov, G.A. Knyazev, S.K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, V.I. Belotelov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 10, pp. 689–694.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatyeva, D.O., Kapralov, P.O., Knyazev, G.A. et al. High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications. Jetp Lett. 104, 679–684 (2016). https://doi.org/10.1134/S0021364016220094

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016220094

Navigation