Skip to main content
Log in

Magnetoresistance of a Ferromagnet/Superconductor/Ferromagnet Trilayer Microbridge Based on Diluted PdFe Alloy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A negative magnetoresistive effect has been observed for ferromagnet/superconductor/ferromagnet (FSF) microbridges based on diluted ferromagnetic PdFe alloy containing as small as 1% of magnetic atoms. The effect is represented by sharp negative peaks in magnetoresistance at magnetic fields opposite in sign to the initial saturated magnetizations. Microstructuring of the FSF trilayers does not suppress the effect: the most pronounced dips were obtained for the smallest bridges 6–8 µm wide and 10–15 µm long. The negative magnetoresistance peak was observed at temperatures within the superconducting transition and reaches a noticeable value of up to 1.3% of the normal state resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Y. Tsymbal and D. G. Pettifor, in Perspectives of Giant Magnetoresistance, Ed. by H. Ehrenreich and F. Spaepen, Vol. 56 of Solid State Physics—Advances in Research and Applications (Academic Press, New York, 2001), p. 113.

    Google Scholar 

  2. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).

    ADS  Google Scholar 

  3. A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).

    ADS  Google Scholar 

  4. G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).

    ADS  Google Scholar 

  5. J. Y. Gu, C. Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).

    ADS  Google Scholar 

  6. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).

    ADS  Google Scholar 

  7. S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).

    ADS  Google Scholar 

  8. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, V. Kataev, O. G. Schmidt, and B. Buchner, Phys. Rev. B 85, 024502 (2012).

    ADS  Google Scholar 

  9. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91, 308 (2010).

    ADS  Google Scholar 

  10. Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, JETP Lett. 77, 510 (2003).

    ADS  Google Scholar 

  11. T. Yu. Karminskaya, A. A. Golubov, and M. Yu. Kupriyanov, Phys. Rev. B 84, 064531 (2011).

    ADS  Google Scholar 

  12. J. Zhu, I. N. Krivorotov, K. Halterman, and O. T. Valls, Phys. Rev. Lett. 105, 207002 (2010).

    ADS  Google Scholar 

  13. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Buchner, Phys. Rev. Lett. 109, 057005 (2012).

    ADS  Google Scholar 

  14. V. I. Zdravkov, J. Kehrle, G. Obermeier, D. Lenk, H.-A. Krug von Nidda, C. Müller, M. Yu. Kupriyanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B 87, 144507 (2013).

    ADS  Google Scholar 

  15. X. L. Wang, A. di Bernardo, N. Banerjee, A. Wells, F. S. Bergeret, M. G. Blamire, and J. W. A. Robinson, Phys. Rev. B 89, 140508 (2014).

    ADS  Google Scholar 

  16. A. A. Jara, C. Safranski, I. N. Krivorotov Ch.-T. Wu, A. N. Malmi-Kakkada, O. T. Valls, and K. Halterman, Phys. Rev. B 89, 184502 (2014).

    ADS  Google Scholar 

  17. A. Singh, S. Voltan, K. Lahabi, and J. Aarts, Phys. Rev. X 5, 021019 (2015).

    Google Scholar 

  18. M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, Phys. Rev. B 91, 060501 (2015).

    ADS  Google Scholar 

  19. D. Lenk, R. Morari, V. I. Zdravkov, A. Ullrich, Yu. Khaydukov, G. Obermeier, C. Müller, A. S. Sidorenko, H.-A. Krug von Nidda, S. Horn, L. R. Tagirov, and R. Tidecks, Phys. Rev. B 96, 184521 (2017).

    ADS  Google Scholar 

  20. V. V. Ryazanov, V. A. Oboznov, A. S. Prokof’ev, and S. V. Dubonos, JETP Lett. 77, 39 (2003).

    ADS  Google Scholar 

  21. A. Yu. Rusanov, M. Hesselberth, J. Aarts, and A. I. Buzdin, Phys. Rev. Lett. 93, 057002 (2004).

    ADS  Google Scholar 

  22. T.-J. Hwang and D. H. Kim, J. Korean Phys. Soc. 61, 1628 (2012).

    ADS  Google Scholar 

  23. Y. Gu, G. Halász, J. W. A. Robinson, and M. G. Blamire, Phys. Rev. Lett. 115, 067201 (2015).

    ADS  Google Scholar 

  24. B. Heller, K.-H. Speidel, R. Ernst, A. Gohla, U. Grabowy, V. Roth, G. Jakob, F. Hagelberg, J. Gerber, S. N. Mishra, and P. N. Tandon, Nucl. Instrum. Methods Phys. Res., Sect. B 142, 133 (1998).

    ADS  Google Scholar 

  25. J. Crangle and W. R. Scott, J. Appl. Phys. 36, 921 (1965).

    ADS  Google Scholar 

  26. C. Büscher, T. Auerswald, E. Scheer, A. Schröder, H. V. Löhneysen, and H. Claus, Phys. Rev. B 46, 983 (1992).

    ADS  Google Scholar 

  27. R. P. Peters, Ch. Buchal, M. Kubota, R. M. Mueller, and F. Pobell, Phys. Rev. Lett. 53, 1108 (1984).

    ADS  Google Scholar 

  28. T. Shinohara, T. Sato, T. Taniyama, and I. Nakatani, J. Magn. Magn. Mater. 196–197, 94 (1999).

    ADS  Google Scholar 

  29. L. S. Uspenskaya, A. L. Rakhmanov, L. A. Dorosinskii, A. A. Chugunov, V. S. Stolyarov, O. V. Skryabina, and C. V. Egorov, JETP Lett. 97, 155 (2013).

    ADS  Google Scholar 

  30. I. A. Golovchanskiy, V. V. Bolginov, N. N. Abramov, V. S. Stolyarov, A. Ben Hamida, V. I. Chichkov, D. Roditchev, and V. V. Ryazanov, J. Appl. Phys. 120, 163902 (2016).

    ADS  Google Scholar 

  31. V. V. Bol’ginov, O. A. Tikhomirov, and L. S. Uspenskaya, JETP Lett. 105, 169 (2017).

    ADS  Google Scholar 

  32. L. S. Uspenskaya, A. L. Rakhmanov, L. A. Dorosinskii, S. I. Bozhko, V. S. Stolyarov, and V. V. Bolginov, Mater. Res. Express 1, 036104 (2014).

    ADS  Google Scholar 

  33. L. S. Uspenskaya and I. N. Khlyustikov, J. Exp. Theor. Phys. 125, 875 (2017).

    ADS  Google Scholar 

  34. V. V. Bol’ginov, V. S. Stolyarov, D. S. Sobanin, A. L. Karpovich, and V. V. Ryazanov, JETP Lett. 95, 366 (2012).

    ADS  Google Scholar 

  35. A. Rusanov, M. Hesselberth, S. Habraken, and J. Aarts, Phys. C (Amsterdam, Neth.) 404, 322 (2004).

    ADS  Google Scholar 

  36. N. Klenov, Yu. Khaydukov, S. Bakurskiy, R. Morari, I. Soloviev, V. Boian, T. Keller, M. Kupriyanov, A. Sidorenko, and B. Keimer, Beilstein J. Nanotechnol. 10, 833 (2019).

    Google Scholar 

  37. Y. Zhu, A. Pal, M. Blamire, and Z. H. Barber, Nat. Mater. 16, 195 (2017).

    ADS  Google Scholar 

  38. Z. Yang, M. Lange, A. Volodin, R. Szymczak, and V. V. Moshchalkov, Nat. Mater. 3, 793 (2004).

    ADS  Google Scholar 

  39. A. Y. Aladyshkin, A. I. Buzdin, A. A. Fraerman, A. S. Mel’nikov, D. A. Ryzhov, and A. V. Sokolov, Phys. Rev. B 68, 184508 (2003).

    ADS  Google Scholar 

  40. A. I. Buzdin and A. S. Mel’nikov, Phys. Rev. B 67, 020503(R) (2003).

    ADS  Google Scholar 

  41. S. Pagano, N. Martucciello, F. Bobba, G. Carapella, C. Attanasio, C. Cirillo, R. Cristiano, M. Lisitskiy, M. Ejrnaes, G. P. Pepe, and L. Parlato, IEEE Trans. Appl. Supercond. 27, 1801004 (2017).

    Google Scholar 

  42. I. A. Golovchanskiy, V. V. Bol’ginov, V. S. Stolyarov, N. N. Abramov, A. Ben Hamida, O. V. Emelyanova, B. S. Stolyarov, M. Yu. Kupriyanov, A. A. Golubov, and V. V. Ryazanov, Phys. Rev. B 94, 214514 (2016).

    ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to N.S. Stepakov, V.N. Shilov, and N.S. Shuravin for their assistance in doing experiments and manuscript preparation.

Funding

L.N. Karelina and V.V. Ryazanov acknowledge the support of the Russian Foundation for Basic Research, project no. 19-32-90162. I.A. Golovchanskiy and V.I. Chichkov took part in technological work and discussion of the results within the framework of NUST MISIS State Assignment no. 0718-2020-0025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Karelina.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 11, pp. 743–748.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelina, L.N., Bolginov, V.V., Erkenov, S.A. et al. Magnetoresistance of a Ferromagnet/Superconductor/Ferromagnet Trilayer Microbridge Based on Diluted PdFe Alloy. Jetp Lett. 112, 705–709 (2020). https://doi.org/10.1134/S0021364020230010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020230010

Navigation