Skip to main content
Log in

Heat and mass transfer analysis in unsteady boundary layer flow through porous media with variable viscosity and thermal diffusivity

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

In this paper, a comprehensive mathematical analysis is carried out on an unsteady boundary-layer flow with heat and mass transfer characteristics of a viscous fluid through porous media. Fluid suction or blowing is assumed to take place at the surface. The governing coupled nonlinear partial differential equations are transformed into coupled nonlinear ordinary differential equations by using a similarity transformation and are solved analytically and numerically by using the homotopy analysis method and the Runge-Kutta and shooting technique, respectively. A comparison between analytical and numerical results is conducted, which shows excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Herwig and G. Wickern, “The Effect of Variable Properties on Laminar Boundary Layer Flow,” Wärmeund Stoffübertrag 20, 47–57 (1986).

    Article  ADS  Google Scholar 

  2. S. Saouli and S. Aiboud-Saouli, “Second Law Analysis of Laminar Falling Liquid Film along an Inclined Heated Plate,” Int. Comm. Heat Mass Transfer 31, 879–886 (2004).

    Article  Google Scholar 

  3. O. D. Makinde, “Heat and Mass Transfer in a Pipe with Moving Surface Effect of Viscosity Variation and Energy Dissipation,” Quaestiones Math. 24, 93–104 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Z. Szeri and K. R. Rajagopal, “Flow of a Non-Newtonian Fluid between Heated Parallel Plates,” Int. J. Non-Linear Mech. 20, 91–101 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Pop, R. S. R. Gorla, and M. Rashidi, “The Effect of Variable Viscosity on Flow and Heat Transfer to a Continuous Moving Flat Plate,” Int. J. Eng. Sci. 30, 1–6 (1992).

    Article  Google Scholar 

  6. S. Mukhopadhyay, G. C. Layek, and Sk. A. Samad, “Study of MHD Boundary Layer Flow over a Heated Stretching Sheet with Variable Viscosity,” Int. J. Heat Mass Transfer 48, 4460–4466 (2005).

    Article  MATH  Google Scholar 

  7. M. E. Ali, “The Effect of Variable Viscosity on Mixed Convection Heat Transfer along a Vertical Moving Surface,” Int. J. Thermal Sci. 45, 60–69 (2006).

    Article  Google Scholar 

  8. M. Yurusoy and M. Pakdemirli, “Approximate Analytical Solutions for the Flow of a Third-Grade Fluid in a Pipe,” Int. J. Non-Linear Mech. 37, 187–195 (2002).

    Article  Google Scholar 

  9. E. M. A. Elbashbeshy and M. A. A. Bazid, “The Effect of Temperature Dependent Viscosity on Heat Transfer over a Continuous Moving Surface with Variable Internal Heat Generation,” J. Phys. D. Appl. Phys. 153, 721–731 (2004).

    MathSciNet  MATH  Google Scholar 

  10. O. D. Makinde, “Laminar Falling Liquid Film with Variable Viscosity along an Inclined Heated Plate,” Appl. Math. Comput. 175, 80–88 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. M. Rahman and K. M. Salahuddin, “Study of Hydromagnetic Heat and Mass Transfer Flow over an Inclined Heated Surface with Variable Viscosity and Electric Conductivity,” Comm. Non-Linear Sci. Numer. Simulat. 15(5), 2073–2085 (2010).

    Article  ADS  MATH  Google Scholar 

  12. M. A. Seddeek, A. A. Darwish, and M. S. Abdelmeguid, “Effects of Chemical Reaction and Variable Viscosity on Hydromagnetic Mixed Convection Heat and Mass Transfer for Hiemenz Flow through Porous Media with Radiation,” Comm. Non-Linear Sci. Numer. Simulat. 12, 195–213 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Y. Ghaly and M. A. Seddeek, “Chebyshev Finite Difference Method for the Effects of Chemical Reaction, Heat and Mass Transfer on Laminar Flow along a Semi Infinite Horizontal Plate with Temperature Dependent Viscosity,” Chaos Solitons Fractals 19, 61–70 (2004).

    Article  ADS  MATH  Google Scholar 

  14. P. S. Gupta and A. S. Gupta, “Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing,” Canad. J. Chem. Engng. 55, 744–746 (1977).

    Article  Google Scholar 

  15. I. C. Liu, “A Note on Heat and Mass Transfer for a Hydromagnetic Flow over a Stretching Sheet,” Int. Comm. Heat Mass Transfer 32, 1075–1084 (2005).

    Article  Google Scholar 

  16. R. Kandaswamy, K. Penaswamy, and K. K. S. Prabhu, “Chemical Reaction, Heat and Mass Transfer on MHD Flow over a Vertical Stretching Surface with Heat Source and Thermal Stratification Effects,” Int. J. Heat Mass Transfer 48, 4557–4561 (2005).

    Article  Google Scholar 

  17. L. E. Erickson, L. T. Fan, and V. G. Fox, “Heat and Mass Transfer on a Moving Continuous Flat Plate with Suction or Injection,” Industr. Eng. Chem. 5, 19–25 (1966).

    Google Scholar 

  18. A. J. Chamkha and A. A. Khaled, “Similarity Solutions for Hydromagnetic Mixed Convection Heat and Mass Transfer for Hiemenz Flow through Porous Media,” Int. J. Numer. Methods Heat Fluid Flow 10, 94–115 (2000).

    Article  MATH  Google Scholar 

  19. R. Tasi and J. S. Huang, “Numerical Study of Soret and Dufour Effects on Heat and Mass Transfer from Natural Convection Flow over a Vertical Porous Medium with Variable Wall Heat Fluxes,” Comput. Materials Sci. 47, 23–30 (2009).

    Article  Google Scholar 

  20. R. Kandasamy, Muhaimin, I. Hashim, and Ruhaila, “Thermophoresis and Chemical Reaction Effects on Non-Darcy Mixed Convection Heat and Mass Transfer past a Porous Wedge with Variable Viscosity in the Presence of Suction or Injection,” Nuclear Eng. Design 238, 2699–2705 (2008).

    Article  Google Scholar 

  21. I. A. Hassanien, A. H. Essawy, and N. M. Moursy, “Variable Viscosity and Thermal Conductivity Effects on Combined Heat and Mass Transfer in Mixed Convection over a UHF/UMF Wedge in Porous Media: The Entire Regime,” Appl. Math. Comput. 145, 667–682 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. U. Mbeledogu and A. Ogulu, “Heat and Mass Transfer of an Unsteady MHD Natural Convection Flow of a Rotating Fluid past a Vertical Porous Flat Plate in the Presence of Radiative Heat Transfer,” Int. J. Heat Mass Transfer 50, 1902–1908 (2007).

    Article  MATH  Google Scholar 

  23. A. J. Chamkha and A. Al-Mudhaf, “Unsteady Heat and Mass Transfer from a Rotating Vertical Cone with a Magnetic Field and Heat Generation or Absorption Effects,” Int. J. Thermal Sci. 44, 267–276 (2005).

    Article  Google Scholar 

  24. M. H. Kamel, “Unsteady MHD Convection through Porous Medium with Combined Heat and Mass Transfer with Heat Source/Sink,” Energy Conversion Management 42, 393–405 (2001).

    Article  Google Scholar 

  25. E. M. A. Elbashbeshy and M. A. A. Bazid, “Heat Transfer over an Unsteady Stretching Surface,” Heat Mass Transfer 41, 1–4 (2004).

    Article  ADS  Google Scholar 

  26. N. O. Moraga, F. Corvalan, M. Escudey, et al., “Unsteady 2D Coupled Heat and Mass Transfer in Porous Media with Biological and Chemical Heat Generations,” Int. J. Heat Mass Transfer 52, 5841–5848 (2009).

    Article  MATH  Google Scholar 

  27. J. X. Ling and A. Dybbs, “Forced Convection over a Flat Plate Submersed in a Porous Medium: Variable Viscosity Case,” ASME Winter Annual Meeting (Boston, 1987), pp. 13–18.

  28. F. C. Lai and F. A. Kulacki, “The Effect of Variable Viscosity on Convective Heat Transfer along a Vertical Surface in a Saturated Porous Medium,” Int. J. Heat Mass Transfer 33, 1028–1033 (1990).

    Article  Google Scholar 

  29. S. J. Liao, Beyond Perturbation, Introduction to Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton, 2003).

    Book  Google Scholar 

  30. S. J. Liao, “On the Analytic Solution of Magnetohydrodynamic Flows of Non-Newtonian Fluid over a Stretching Sheet,” J. Fluid. Mech. 488, 189–212 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. Abbasbandy, “The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer,” Phys. Lett. A 360, 109–113 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Y. Wu, C. Wang, and S. J. Liao, “Solving SolitaryWaves with Discontinuity by means of the Homotopy Analysis Method,” Choas Solitons Fractals 26, 177–194 (2005).

    Article  ADS  MATH  Google Scholar 

  33. S. J. Liao and K. F. Cheung, “Homotopy Analysis of Nonlinear Progressive Waves in Deep Water,” J. Eng. Math. 45, 105–116 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Xu and S. J. Liao, “Series Solutions of Unsteady Magnetohydrodynamic Flows of Non-Newtonian Fluids Caused by an Impulsively Stretching Plate,” J. Non-Newtonian Fluid Mech. 129, 46–55 (2005).

    Article  MATH  Google Scholar 

  35. A. Ali and A. Mehmood, “Homotopy Analysis of Unsteady Boundary Layer Flow Adjacent to Permeable Stretching Surface in a Porous Medium,” Comm. Non-Linear Sci. Numer. Simulat. 13, 340–349 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Z. Ziabakhsh, G. Domairy, M. Mozaffari, and M. Mahbobifar, “Analytical Solution of Heat Transfer over an Unsteady Stretching Permeable Surface with Prescribed Wall Temperature,” J. Taiwan Inst. Chem. Eng. 41(2), 169–177 (2010).

    Article  Google Scholar 

  37. H. Xu, “An Explicit Analytic Solution for Free Convection about a Vertical Flat Plate in a Porous Media by mean of Homotopy Analysis Method,” Appl. Math. Comput. 158, 433–443 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  38. F. M. Allan and M. I. Syam, “On Analytic Solution of the Non-Homogeneous Blasius Problem,” J. Comput. Appl. Math. 182, 355–365 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  39. Z. Ziabakhsh and G. Domairy, “Solution of the Laminar Viscous Flow in a Semi-Porous Channel in the Presence of Uniform Magnetic Field by Using the Homotopy Analysis Method,” Comm. Non-Linear Sci. Numer. Simulat. 14, 1284–1294 (2009).

    Article  ADS  Google Scholar 

  40. Z. Ziabakhsh, G. Domairy, and H. Bararnia, “Analytical Solution of Non-Newtonian Micropolar Fluid Flow with Uniform Suction/Blowing and Heat Generation,” J. Taiwan Inst. Chem. Eng. 40(4), 443–451 (2009).

    Article  Google Scholar 

  41. Y. Bouremel, “Explicit Series Solution for the Glauert-Jet Problem by means of the Homotopy Analysis Method,” Comm. Non-Linear Sci. Numer. Simulat. 12(5), 714–724 (2007).

    Article  ADS  MATH  Google Scholar 

  42. Z. Ziabakhsh, G. Domairy, and G. Ghazizaheh, “Analytical Solution of the Stagnation-Point Flow in a Porous Medium by Using the Homotopy Analysis Method,” J. Taiwan Inst. Chem. Eng. 40(1), 91–97 (2009).

    Article  Google Scholar 

  43. A. Mehmood and A. Ali, “Heat Transfer Analysis of Three-Dimensional Flow in a Channel of Lower Stretching Wall,” J. Taiwan Inst. Chem. Eng. 41(1), 29–34 (2010).

    Article  Google Scholar 

  44. A. Mehmood and A. Ali, “An Explicit Analytic Solution of Steady Three-Dimensional Stagnation Point Flow of Second Grade Fluid toward a Heated Plate,” Trans. ASME, J. Appl. Mech. 75, 061003–1 (2008).

    Article  ADS  Google Scholar 

  45. A. Mehmood and A. Ali, “Analytic Solution of Three-Dimensional Viscous Flow and Heat Transfer over a Stretching Flat Surface by Homotopy Analysis Method,” Trans. ASME, J. Heat Transfer 130, 121701–1 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mehmood.

Additional information

Original Russian Text © S. Husnain, A. Mehmood, A. Ali.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 53, No. 5, pp. 104–116, September–October, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husnain, S., Mehmood, A. & Ali, A. Heat and mass transfer analysis in unsteady boundary layer flow through porous media with variable viscosity and thermal diffusivity. J Appl Mech Tech Phy 53, 722–732 (2012). https://doi.org/10.1134/S0021894412050112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894412050112

Keywords

Navigation