Skip to main content
Log in

Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents a review of studies of delayed fracture and fracture mechanics problems in which the hypotheses and ideas of Yu. N. Rabotnov and L. M. Kachanov on the mechanisms of delayed fracture under creep conditions are extended to describe fracture processes using scalar and tensor measures of damage. The results of current research in the theory of elasticity, the mathematical theory of plasticity and creep, the mechanics of composites, and linear and nonlinear fracture mechanics, with material damage taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, “On the Mechanism of Delayed Fracture,” in Strength of Materials and Structures (Izd. Akad. Nauk SSSR, Moscow, 1959), pp. 5–7 [in Russian].

    Google Scholar 

  2. Yu. N. Rabotnov, Selected Works. Problems of Solid Mechanics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  3. L. M. Kachanov, On the Creep Fracture Time (Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1958) [in Russian], pp. 26–31.

    Google Scholar 

  4. Yu. N. Rabotnov, Creep of Structural Elements (Nauka, Moscow, 1966; North-Holland, Amsterdam, 1969).

    Google Scholar 

  5. V. N. Kukudzhanov, Computer Modeling of the Deformation, Damage, and Fracture of Inelastic Materials and Structures (Moscow Physicotech. Inst., Moscow, 2008).

    Google Scholar 

  6. V. N. Kukudzhanov, Numerical Continuum Mechanics (De Gruyer, Berlin, 2012).

    Book  Google Scholar 

  7. J.-F. Wen, S.-T. Tu, X. L. Gao, and J. N. Reddy, “Simulation of Creep Crack Growth in 316 Stainless Steel Using a Novel Creep-Damage Model,” Eng. Fracture Mech. 98, 169–184 (2013).

    Article  Google Scholar 

  8. E.-H. Kim, M.-S. Rim, and T.-K. Hwang, “Composite Damage Model Based on Continuum Damage Mechanics and Low Velocity Impact Analysis of Composite Plates,” Composite Structures 95, 123–134 (2013).

    Article  Google Scholar 

  9. L. Zhao, H. Jing, L. Xu, et al., “Numerical Investigation of Factors Affecting Creep Damage Accumulation in ASME P92 Steel Welded Joint,” Material Design 34, 566–575 (2012).

    Article  Google Scholar 

  10. L. V. Stepanova, “Refined Calculation of the Stress-Strain State at the Crack Tip in a Damaged Medium under Cyclic Loading,” Vestn. Samara Gos. Univ., No. 83, 105–115 (2011).

    Google Scholar 

  11. S. Murakami, Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture (Springer, Dordrecht, 2012).

    Google Scholar 

  12. M. Kuna, Finite Elements in Fracture Mechanics. Theory-Numerics-Applications (Springer, Dordrecht, 2013).

    Book  MATH  Google Scholar 

  13. G. Z. Voyiadis and P. I. Kattan, Damage Mechanics with Finite Elements: Practical Applications with Computer Tools (Springer, Dordrect, 2012).

    Google Scholar 

  14. E. M. Adylina, S. A. Igonin, and L. V. Stepanova, “On the Nonlinear Eigenvalue Problem, Following from the Stress Analysis at the Tip of a Fatigue Crack,” Vestn. Samar. Gos. Univ., No. 3.1, 83–102 (2012).

    Google Scholar 

  15. H. Riedel, Creep Crack Initiation and Growth, Encyclopedia of Materials: Science and Technology (Elsevier, Oxford, 2001), pp. 1767–1773.

    Book  Google Scholar 

  16. I. A. Volkov and Yu. G. Korotkikh, Equations of State of Damaged Viscoelastoplastic Media (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  17. I. K. Korolev, S. V. Petinov, and A. B. Freidin, “Numerical Simulation of Damage Accumulation and Development of a Fatigue Crack in Elastic Materials,” Vychisl. Mekh. Sploshn. Sred 2(3), 34–43 (2009).

    Google Scholar 

  18. Yu. N. Rabotnov, Creep of Structural Elements (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  19. V. I. Astaf’ev, Yu. N. Radaev, and L. V. Stepanova, Nonlinear Fracture Mechanics (Samara State University, Samara, 2001) [in Russian].

    Google Scholar 

  20. V. I. Astaf’ev, “Growth of Cracks with Creep, Taking Account of the Plastic Zone near the Tip of a Crack,” Prikl. Mekh. Tekh. Fiz., No. 6, 154–158 (1979) [J. Appl. Mech. Tech. Phys., No. 6, 785–788 (1979)].

    Google Scholar 

  21. S. Kubo, K. Ohji, and K. Ogura, “An Analysis of Creep Crack Propagation on the Basis of the Plastic Singular Stress Field,” Eng. Fracture Mech. 11, 315–329 (1979).

    Article  Google Scholar 

  22. H. Riedel, “The Extansion of a Macroscopic Crack at Elevated Temperature by the Growth and Coalescence of Microvoids,” in Creep in Structures (Springer, Berlin, 1981), pp. 504–519.

    Chapter  Google Scholar 

  23. A. C. F. Cocks and M. F. Ashby, “The Growth of Dominant Crack in a Creeping Material,” Scripta Metallurg. 16, 109–114 (1982).

    Article  Google Scholar 

  24. V. I. Astaf’ev, “Crack Growth under Creep Conditions,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 127–134 (1986).

    Google Scholar 

  25. D. Krajcinovic, Damage Mechanics (Elsevier, Amsterdam, 1996).

    Google Scholar 

  26. J. A. Lemaitre, Course on Damage Mechanics (Springer-Verlag, Berlin, 1992).

    Book  MATH  Google Scholar 

  27. J. A. Lemaitre and R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  28. J. L. Chaboche, “Phenomenological Aspects of Continuum Damage Mechanics,” in Proc. of the 17th Congress of Theoretical and Applied Mechanics, Grenoble, August 21–27, 1988, Ed. by P. German, M. Piau, D. Caillerie (Elsevier, Grenoble, 1989), pp. 41–56.

    Google Scholar 

  29. L. M. Kachanov, Introduction to Continuum Damage Mechanics (Martinus Nijhoff, Dordrecht-Boston, 1986).

    Book  MATH  Google Scholar 

  30. L. V. Stepanova, Mathematical Methods of Fracture Mechanics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  31. L. V. Stepanova and M. E. Fedina, “Self-Similar Solution of the Antiplane Shear Fracture Problem in a Coupled Formulation (Creep-Damage),” Prikl. Mekh. Tekh. Fiz. 43(5), 114–123 (2002) [J. Appl. Mech. Tech. Phys. 43 (5), 731–738 (2002)].

    MATH  Google Scholar 

  32. J. Zhao and X. Zhao, “The Asymptotic Study of Fatigue Crack Growth Based on Damage Mechanics,” Eng. Fracture Mech. 50(1), 131–141 (1995).

    Article  Google Scholar 

  33. J. Zhao and X. Zhang, “On the Process Zone of a Quasi-Static Growing Tensile Crack with Power-Law Elastic-Plastic Damage,” Int. J. Fracture 108, 383–395 (2001).

    Article  Google Scholar 

  34. V. I. Astaf’ev, T. V. Grigorova, and V. A. Pastukhov, “Effect of Material Damage on the Stress-Strain State in the Vicinity of the Crack Tip in Creep,” Fiz.-Khim. Mekh. Mater. 28(1), 5–11 (1992).

    Google Scholar 

  35. V. I. Astaf’ev and T. V. Grigorova, “Distribution of Stresses and Damage at the Tip of a Propagating Creep Crack,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 160–166 (1995).

    Google Scholar 

  36. S. B. Lee, M. Lu, and J. Y. Kim, “An Asymptotic Analysis of a Tensile Crack in Creeping Solids Coupled with Cumulative Damage. Part 1. Small Damage Region around the Crack Tip,” Int. J. Solids Struct 34(24), 3163–3178 (1997).

    Article  MATH  Google Scholar 

  37. S. B. Lee, M. Lu, and J. Y. Kim, “An Asymptotic Analysis of a Rensile Crack in Creeping Solids Coupled with Cumulative Damage. Pt 2. Large Damage Region around the Crack Tip,” Int. J. Solids Struct. 34(10), 1183–1197 (1997).

    Article  MATH  Google Scholar 

  38. S. Murakami, T. Hirano, and Y. Liu, “Asymptotic Fields of Stress and Damage of a Mode I Creep Crack in Steady-State Growth,” Int. J. Solids Struct. No. 37, 6203–6220 (2000).

    Google Scholar 

  39. S. Murakami, Y. Liu, and M. Mizuno, “Computational Methods for Creep Fracture Analysis by Damage Mechanics,” Comput. Methods Appl. Mech. Eng. 183, 15–33 (2000).

    Article  MATH  ADS  Google Scholar 

  40. V. I. Kukudzhanov, “Related Models of Elastoplasticity and Damage and Their Integration,” Izv. Ross. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 103–135 (2006).

    Google Scholar 

  41. V. N. Kukudzhanov, A. L. Levitin, and V. S. Sinyuk, “Numerical-Analytical Method of Splitting for Modeling Quasi-Static Deformation Processes of Damaging Materials,” in Applied Problems of Strength and Plasticity (Nizhny Novgorod State University, Nizhny Novgorod, 2006), Issue 68, pp. 7–21.

    Google Scholar 

  42. P. Mika, “Influence of Variable Load on Damage Evolution in the Plate Structures,” in Proc. of the 15th Int. Conf. on Computer Methods in Mechanics CMM-2003 Short Papers, Gliwice, June 3–6, 2003 (Silesian Tech. Univ., Gliwice, 2003), pp. 253–254.

    Google Scholar 

  43. O. Ya. Izvekov, A. A. Selitskii, and A. M. Krupenik, “Implementation of the Energy Model of Continuum Fracture of Brittle Media in SIMULIA/ABAQUS 6.9,” http://www.tesis.com/software/abaqus/abaqus-exp.php.

  44. O. I. Izvekov and A. M. Krupenik, “Solution of Coupled Problems of Continuum Fracture in Thermo- and Poroelastic Media in SIMULIA ABAQUS,” http://www.tesis.com/software/abaqus/abaqus-exp.php.

  45. O. Ya. Izvekov and V. I. Kondaurov, “Model of an Elastic Porous Medium with a Fractured Skeleton,” Izv. Ross. Akad. Nauk, Fiz. Zemli, No. 4, 31–42 (2009).

    Google Scholar 

  46. V. I. Kondaurov, Mechanics and Thermodynamics of a Saturated Porous Medium (Moscow Physicotech. Univ., Moscow, 2007) [in Russian].

    Google Scholar 

  47. O. Ya. Izvekov and V. I. Kondaurov, “Diffuse Fracture of Porous Materials with a Brittle Skeleton,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 164–187 (2010).

    Google Scholar 

  48. D. R. Hayhurst, “CDM Mechanisms-Based Modelling of Tertiary Creep: Ability to Predict the Life of Engineering Components,” Arch. Mech. 57, 103–132 (2005).

    MATH  Google Scholar 

  49. Yu. N. Radaev, “Continuum Damage Model for Solids,” Doct. Dissertation in Phys.-Math. Sci. (Moscow, 1999).

    Google Scholar 

  50. G. Z. Voyiadjis, Advances in Damage Mechanics: Metals and Metal Matrix Composites, Ed. by G. Z. Voyiadjis and P. I. Kattan (Elsevier, Oxford, 2006).

  51. G. Z. Voyiadjis, Handbook of Damage Mechanics. Nano to Macro Scale for Materials and Structures (Springer, Dordrecht, 2014).

    Google Scholar 

  52. A. Litewka and Z. Lis, Creep Damage and Creep Rupture of Metals, Applied Stress Analysis, Ed. by T. H. Hyde and E. Ollerton (Elsevier, London, 1990), pp. 201–210.

  53. H. Riedel, Fracture at High Temperature (Springer, Berlin, 1987).

    Book  Google Scholar 

  54. H. D. Bui, Fracture Mechanics: Inverse Problems and Solutions (Springer, 2006).

    Google Scholar 

  55. V. I. Kondaurov and V. E. Fortov, Foundations of Thermomechanics of Condensed Media (Moscow Physicotech. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Stepanova.

Additional information

Original Russian Text © L.V. Stepanova, S.A. Igonin.

__________

Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 2, pp. 133–145, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, L.V., Igonin, S.A. Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects. J Appl Mech Tech Phy 56, 282–292 (2015). https://doi.org/10.1134/S0021894415020145

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415020145

Keywords

Navigation