Skip to main content
Log in

Assessment of the service life of structural steels by using degradation models with allowance for fatigue and creep of the material

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A mathematical model is developed within the framework of equations of damaged medium mechanics to describe the processes of viscoplastic straining and damage accumulation in structural steels with allowance for fatigue and creep of the material. A model of damage summation due to interaction of low-cycle fatigue and creep of the material is proposed. Material parameters and scalar functions of equations of mechanics of damaged media are determined. Viscoplastic straining and fatigue-induced damage accumulation in 08Kh18N10T and 12Kh18N9 are studied numerically, and the data obtained are compared with available results of physical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Khazhinskii, “On the Theory of Creep and Long-Term Strength of Metals,” Inzh. Zh., Mekh. Tverd. Tela, No. 6, 290036 (1971).

    Google Scholar 

  2. R. A. Dul’nev and P. I. Kotov, Thermal Fatigue of Metals (Mashinostroenie, Moscow, 1980) [in Russian].

    Google Scholar 

  3. Y. Ohashi, M. Kawai, and T. Kaito, “Inelastic Behavior of Type 316 Stainless Steel under Multiaxial Nonproportional Cyclic Stressings at Elevated Temperature,” Trans. ASME, J. Eng. Mat. Technol. 107 (2), 101–109 (1985).

    Article  Google Scholar 

  4. Y. Ohashi, E. Tanaka, and M. Ooka, “Plastic Deformation Behavior of Type 316 Stainless Steel Subject to Out-of-Phase Strain Cycles,” Trans. ASME, J. Eng. Mater. Technol. 107 (4), 286–292 (1985).

    Article  Google Scholar 

  5. H. S. Lamba and O. M. Sidebottom, “Cyclic Plasticity for Non-Proportional Paths. 1. Cyclic Hardening, Erasure of Memory, and Subsequent Strain Hardening Experiments,” Trans. ASME, J. Eng. Mater. Technol. 100 (1), 645–651 (1976).

    Google Scholar 

  6. D. L. McDowell, “An Experimental Study of the Structure of Constitutive Equations for Nonproportional Cyclic Plasticity,” Trans. ASME, J. Eng. Mater. Technol. 107 (4), 307–315 (1985).

    Article  MathSciNet  Google Scholar 

  7. A. G. Kazantsev, “Investigation of Interaction of Low-Cycle Fatigue and Creep under Non-Isothermal Loading,” Probl. Prochn., No. 7, 3–8 (1983).

    Google Scholar 

  8. J. Collins, Failure of Materials in Mechanical Design (Wiley, New York, 1979).

    Google Scholar 

  9. F. M. Mitenkov, Yu. G. Korotkikh, and V. B. Kaidalov, Methodology, Methods, and Tools for Controlling the Service Life of Nuclear Power Plants (Mashinostroenie, Moscow, 2006) [in Russian].

    Google Scholar 

  10. I. A. Volkov and Yu. G. Korotkikh, Equations of State of Damaged Viscoelastoplastic Media (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  11. I. A. Volkov and Yu. G. Korotkikh, “Modeling of Complex Plastic Straining of Materials over Arbitrary Paths of Thermal-Force Loading,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 69–83 (2007).

    Google Scholar 

  12. I. A. Volkov, Yu. G. Korotkikh, and I. S. Tarasov, “Modeling Complex Plastic Deformation and Fracture of Metals under Disproportionate Loading,” Prikl. Mekh. Tekh. Fiz. 50 (5), 193–205 (2009) [J. Appl. Mech. Tech. Phys. 50 (5), 891–900 (2009)].

    Google Scholar 

  13. I. A. Volkov, Yu. G. Korotkikh, and D. N. Shishulin, “Principles and Methods of Determining Scalar Material Parameters of the Plastic Flow Theory with Kinematic and Isotropic Hardening,” Vychisl. Mekh. Sploshn. Sred 3 (3), 46–57 (2010).

    Google Scholar 

  14. I. A. Volkov, D. A. Kazakov, and Yu. G. Korotkikh, “Experimental and Theoretical Techniques of Determining Parameters of Equations of Damaged Medium Mechanics with Fatigue and Creep,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekhanika, No. 2, 30–58 (2012).

    Google Scholar 

  15. S. R. Bodner and U. S. Lindholm, “An Incremental Criterion for Time-Dependent Failure of Materials,” Trans. ASME, J. Eng. Mater. Technol. 100 (2), 140–145 (1976).

    Article  Google Scholar 

  16. J. Lemaitre, “A Continuum Damage Mechanics Model for Ductile Fracture,” Trans. ASME, J. Eng. Mater. Technol. 107 (1), 83–89 (1985).

    Article  MathSciNet  Google Scholar 

  17. S. Murakami and T. Imaizumi, “Mechanical Description of Creep Damage and Its Experimental Verification,” J. Mech. Theor. Appl., No. 1, 743–761 (1982).

    MATH  Google Scholar 

  18. J. L. Chaboche, “Constitutive Equation for Cyclic Plasticity and Cyclic Viscoplasticity,” Int. J. Plasticity 5 (3), 247–302 (1989).

    Article  MATH  Google Scholar 

  19. J. L. Chaboche, “Une Loi Differentielle d’Endommagement de Fatigue avec Cumulation Non Lineaire,” Rev. Franc. Mec., Nos. 50/51, 71–82 (1974).

    Google Scholar 

  20. M. Bernard-Connoly, T. Bui-Quoc, and A. Biron, “Multilevel Strain Controlled Fatigue on a Type 304 Stainless Steel,” Trans. ASME, J. Eng. Mater. Technol. 105 (3), 188–194 (1983).

    Article  Google Scholar 

  21. T. N. Mozharovskaya, “Program and Technique of Studying Creep and Long-Term Strength of Materials with Allowance for the Stress Deviator Form and Loading History,” Probl. Prochn., No. 11, 83–88 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Volkov.

Additional information

Original Russian Text © I.A. Volkov, V.V. Egunov, L.A. Igumnov, D.A. Kazakov, Yu.G. Korotkikh, F.M. Mitenkov.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 6, pp. 70–83, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, I.A., Egunov, V.V., Igumnov, L.A. et al. Assessment of the service life of structural steels by using degradation models with allowance for fatigue and creep of the material. J Appl Mech Tech Phy 56, 995–1006 (2015). https://doi.org/10.1134/S0021894415060097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415060097

Keywords

Navigation