Skip to main content
Log in

Electrohydrodynamic peristaltic flow of a viscoelastic Oldroyd fluid with a mild stenosis: Application of an endoscope

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The effect of a vertical alternating current, electric field, and heat transfer on a peristaltic flow of a dielectric viscoelastic Oldroyd fluid is studied. This analysis involves uniform and nonuniform annuli having a mild stenosis. The analytical solutions of equations of motion are based on the perturbation technique. This technique depends on two parameters: amplitude ratio and small wave number. Numerical calculations are performed to obtain the effects of several parameters, such as the electrical Rayleigh number, temperature gradient, Reynolds number, wave number, maximum height of stenosis, and Weissenberg numbers, on the distributions of velocity, temperature, electric potential, and wall shear stress. It is found that the above-mentioned distributions in the case of a convergent tapered tube are larger than those in the case of a non-tapered one as well as a diverging tapered tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Oldroyd “Non Newtonian Effects in Steady Motion of Some Idealised Elastico–Viscous Liquids,” Proc. Roy. Soc. London, Ser. A 245, 278–297 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. T. W. Latham, “Fluid Motion in a Peristaltic Pump,” M.S. Thesis (Massachusetts Inst. of Technol., Cambridge, 1966).

    Google Scholar 

  3. A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic Pumping with Long Wave Lengths at Low Reynolds Number,” J. Fluid Mech. 37, 799–825 (1969).

    Article  ADS  Google Scholar 

  4. Y. C. Fung and F. Yin, “Peristaltic Waves in Circular Cylindrical Tubes,” J. Appl. Mech. 36, 579–587 (1969).

    Article  Google Scholar 

  5. S. Chakravarty, A. Datta, and P. K. Mandal, “Analysis of Nonlinear Blood Flow in a Stenosed Flexible Artery,” Int. J. Eng. Sci. 33, 1821–1837 (1995).

    Article  MATH  Google Scholar 

  6. N. Verma and R. S. Parihar, “Mathematical Model of Blood Flow through a Tapered Artery with Mild Stenosis and Hematocrit,” J. Modern Math. Stat. 4, 38–43 (2010).

    Article  MathSciNet  Google Scholar 

  7. W. W. Nichols and M. F. Orourke, McDonald’s Blood Flow in Arteries (Oxford Univ. Press, New York, 1973).

    Google Scholar 

  8. F. G. Mann, J. F. Herrick, and H. Essex, “Effects of Blood Flow on Decreasing the Lumen of a Blood Vessel,” Surgery 4, 249–252 (1938).

    Google Scholar 

  9. C. P. Arora, Heat and Mass Transfer (Khanna, Delhi, 1997).

    Google Scholar 

  10. S. Nadeem and N. S. Akbar, “Influence of Heat Transfer on a Peristaltic Transport of Herschel–Bulkley Fluid in a Non Uniform Inclined Tube,” Comm. Nonlinear Sci. Numer. Simulat. 14, 4100–4113 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Takashima, Electrohydrodynamic Instability in a Dielectric Fluid between Two Coaxial Cylinders, Quart. J. Mech. Appl. Math. 33, 93–103 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. R. Melcher, Electromechanical Dynamics (John Wiley and Sons, New York, 1968).

    Google Scholar 

  13. J. M. Crowley, Electrostatic Fundamentals: Handbook of Electrostatic Processes (Marcel Dekker, New York, 1995).

    Google Scholar 

  14. S. K. Pandey and M. K. Chaube, “Peristaltic Transport of a Visco-Elastic Fluid in a Tube of Non-Uniform Cross Section,” Math. Comput. Modelling 52, 501–514 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. K. Mandal, “An Unsteady of Non-Newtonian Blood Flow through Tapered Arteries with a Stenosis,” Int. J. Non-Linear Mech. 40, 151–164 (2005).

    Article  ADS  MATH  Google Scholar 

  16. M. Takashima and A. K. Ghosh, “Electrohydrodynamic Instability of Viscoelastic Liquid Layer,” J. Phys. Soc. Japan. 47, 1717–1722 (1979).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959; Macmillan, New York, 1960).

    MATH  Google Scholar 

  18. C. Tropea, A. L. Yarin, and J. F. Foss, Hand Book of Experimental Fluid Mechanics (Springer, Berlin, 2007).

    Book  Google Scholar 

  19. W. K. H. Panofskyand M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading–London, 1955).

    Google Scholar 

  20. N. N. Lebedev, Special Function and Their Applications (Prentice-Hall, Englewood Cliffs, 1965).

    MATH  Google Scholar 

  21. M. Y. Jaffrin, “Inertia and Streamline Curvature Effects on Peristalsis Pumping,” Int. J. Eng. Sci. 11, 681–699 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. M. El-dabe.

Additional information

Original Russian Text © N.T.M. El-dabe, G.M. Moatimid, M.A. Hassan, and D.R. Mostapha.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 1, pp. 45–63, January–February, 2016. Original article submitted September 10, 2014; revision submitted October 30, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-dabe, N.T.M., Moatimid, G.M., Hassan, M.A. et al. Electrohydrodynamic peristaltic flow of a viscoelastic Oldroyd fluid with a mild stenosis: Application of an endoscope. J Appl Mech Tech Phy 57, 38–54 (2016). https://doi.org/10.1134/S0021894416010065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416010065

Keywords

Navigation