Skip to main content
Log in

Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A detailed comparison between the lattice Boltzmann method and the finite element method is presented for an incompressible steady laminar flow and heat transfer of a power-law fluid past a square cylinder between two parallel plates. Computations are performed for three different blockage ratios (ratios of the square side length to the channel width) and different values of the power-law index n covering both pseudo-plastic fluids (n < 1) and dilatant fluids (n > 1). The methodology is validated against the exact solution. The local and averaged Nusselt numbers are also presented. The results show that the relatively simple lattice Boltzmann method is a good alternative to the finite element method for analyzing non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Ashby and R. A. Verrall, “Michromechanisms of Flow and Fracture, and Their Relevance to the Rheology of the Upper Mantle,” Philos. Trans. Roy. Soc. London, Ser. A 288, 59–95 (1977).

    Article  ADS  Google Scholar 

  2. V. D. Federico, “Non-Newtonian Flow in a Variable Aperture Fracture,” Transport Porous Med. 30, 75–86 (1998).

    Article  Google Scholar 

  3. R. B. Bird and J. M. West, “Constitutive Equations for Polymeric Liquids,” Annual Rev. Fluid Mech. 27, 169–193 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  4. W. M. Nichols and M. F. O’Rourke, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Oxford Univ. Press, New York, 2005).

    Google Scholar 

  5. A. K Gupta., A. Sharma, R. P. Chhabra, and V. Eswaran, “Two-Dimensional Steady Flow of a Power Law Fluid Past a Square Cylinder in a Plane Channel: Momentum and Heat Transfer Characteristics,” Indust. Eng. Chem. Res. 42, 5674–5686 (2003).

    Article  Google Scholar 

  6. S. Nitin and R. P. Chhabra, “Non-Isothermal Flow of a Power Law Fluid Past a Rectangular Obstacle (of Aspect Ratio 1 × 2) in a Channel: Drag and Heat Transfer,” Int. J. Eng. Sci. 43, 707–720 (2005).

    Article  MATH  Google Scholar 

  7. R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow in the Process Industries (Butterworth-Heinemann, Oxford, 1999).

    Google Scholar 

  8. R. P. Chhabra, “Hydrodynamics of Non-Spherical Particles in Non-Newtonian Fluids,” in Handbook of Applied Polymer Processing Technology, Ed. by N. P. Cheremisinoff and P. N. Cheremisinoff (Marcel Dekker, New York, 1996), Chapter 1, pp. 1–46.

    Google Scholar 

  9. M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and Deflection Analysis of Complex Structures,” J. Aeronaut. Sci. 23, 805–823 (1956).

    Article  MATH  Google Scholar 

  10. G. R. McNamara and G. Zanetti, “Use of the Boltzmann Equation to Simulate Lattice-Gas Automata,” Phys. Rev. Lett. 61, 2332–2335 (1988).

    Article  ADS  Google Scholar 

  11. Z. L. Guo and C. G. Zheng, Lattice Boltzmann Method for Hydrodynamics (Hubei Sci. and Technol. Publ., Wuhan, 2002).

    Google Scholar 

  12. E. Aharonov and D. H. Rothman, “Non-Newtonian Flow (through Porous-Media): A Lattice Boltzmann Method,” Geophys. Res. Lett. 20, 679–682 (1993).

    Article  ADS  Google Scholar 

  13. S. Gabbanelli, G. Drazer, and J. Koplik, “Lattice Boltzmann Method for Non-Newtonian (Power Law) Fluids,” Phys. Rev. E. 72, 046312 (2005).

    Article  ADS  Google Scholar 

  14. J. Boyd, J. Buick, and S. Green, “A Second-Order Accurate Lattice Boltzmann Non-Newtonian Flow Model,” J. Phys. A 39, 14241–14247 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. K. Dhiman, “Heat Transfer to Power Law Dilatant Fluids in a Channel with a Built-in Square Cylinder,” Int. J. Thermal Sci. 48, 1552–1563 (2009).

    Article  Google Scholar 

  16. M. Bouaziz, S. Kessentini, and S. Turki, “Numerical Prediction of Flow and Heat Transfer of Power Law Fluids in a Plane Channel with a Built-in Heated Square Cylinder,” Int. J. Heat Mass Transfer 53, 5420–5429 (2010).

    Article  MATH  Google Scholar 

  17. C. H. Wang and J. R. Ho, “A Lattice Boltzmann Approach for the Non-Newtonian Effect in the Blood Flow,” Comput. Math. Appl. 62, 75–86 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Sohankar, C. Norberg, and L. Davidson, “Low-Reynolds Number Flow around a Square Obstacle at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition,” Int. J. Numer. Methods Fluids 26, 39–56 (1998).

    Article  ADS  MATH  Google Scholar 

  19. A. Quarteroni and T. M. Veneziani, “Computational Vascular Fluid Dynamics: Problems, Models and Methods,” Comput. Visual Sci. 2, 163–197 (2000).

    Article  MATH  Google Scholar 

  20. R. B. Bird, Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics (John Wiley and Sons, New York, 1987).

    Google Scholar 

  21. Byron R. Bir, W. E. Stewart, E. N. Lightfootd, Transport Phenomena (John Wiley and Sons, New York, 1960).

    Google Scholar 

  22. Y. Peng, C. Shu, and Y. T. Chew, “Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows,” Phys. Rev. E 68, 026701 (2003).

    Article  ADS  Google Scholar 

  23. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A Model for Collision Processes in Gases. 1. Small Amplitude Processes in Charged and Neutral One-Component Systems,” Phys. Rev. 94 (3), 511–525 (1954).

    Article  ADS  MATH  Google Scholar 

  24. Y. H. Qian, D. d’Humières, and D. P. Lallemand, “Lattice BGK Models for Navier–Stokes Equation,” Europhys. Lett. 17, 479–484 (1992).

    Article  ADS  MATH  Google Scholar 

  25. X. Y. He, S. Y. Chen, and G. D. Doolen, “A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit,” J. Comput. Phys. 146, 282–300 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Y. Y. Yan and Y. Q. Zu, “Numerical Simulation of Heat Transfer and Fluid Flow Past a Rotating Isothermal Cylinder—a LBM Approach,” Int. J. Heat Mass Transfer 51, 2519–2536 (2008).

    Article  MATH  Google Scholar 

  27. A. A. Mohamad, Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer (Univ. of Calgari, Calgary, 2007).

    Google Scholar 

  28. J. K. Wang, M. R. Wang, and Z. X. Li, “A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer,” Int. J. Thermal Sci. 46, 228–234 (2007).

    Article  Google Scholar 

  29. A. K. Dhiman, R. P. Chhabra, and V. Eswaran, “Steady Flow Across a Confined Square Cylinder: Efects of Power-Law Index and Blockage Ratio,” J. Non-Newtonian Fluid Mech. 148, 141–150 (2008).

    Article  MATH  Google Scholar 

  30. A. K. Dhiman, R. P. Chhabra, and V. Eswaran, “Heat Transfer to Power-Law Fluids from a Heated Square Sylinder,” Numer. Heat Transfer. A 52, 185–201 (2007).

    Article  ADS  Google Scholar 

  31. Q. S. Zou and X. Y. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids 9 (6), 1591–1598 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. R. Mei, L. S. Luo, and W. Shyy, “An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method,” J. Comput. Phys. 155, 307–330 (1999).

    Article  ADS  MATH  Google Scholar 

  33. T. Inamuro, M. Yoshino, and F. Ogino, “A Non-Slip Boundary Condition for Lattice Boltzmann Simulations,” Phys. Fluids 7 (12), 2928–2930 (1995).

    Article  ADS  MATH  Google Scholar 

  34. O. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu, Finite Element Method for Fluid Dynamics (Elsevier, Amsterdam, 2005).

    MATH  Google Scholar 

  35. F. Nannelli and S. Succi, “The Lattice-Boltzmann Equation on Irregular Lattices,” J. Statist. Phys. 68, 401–407 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. N. Cao, S. Chen, S. Jin, and D. Martinez, “Physical Symmetry and Lattice Symmetry in the Lattice-Boltzmann Method,” Phys. Rev. E 55, 21–24 (1997).

    Article  ADS  Google Scholar 

  37. X. He, L. S. Luo, and M. Dembo, “Some Progress in Lattice-Boltzmann Methods. 1. Nonuniform Mesh Grids,” J. Comput. Phys. 129, 357–363 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. S. Chen and G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows,” Annual Rev. Fluid Mech. 30, 329–364 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. A. Cengel, Heat and Mass Transfer (McGraw Hill, Singapore, 2006).

    Google Scholar 

  40. B. Paliwal, Sharma Atul, R. P. Chhabra, and V. Eswaran, “Power Law Fluid Flow Past a Square Cylinder: Momentum and Heat Transfer Characteristics,” J. Chem. Eng. Sci. 58, 5315–5329 (2003).

    Article  Google Scholar 

  41. D. Kandhai, A. Koponen, A. Hoekstra, et al., “Lattice-Boltzmann Hydrodynamics on Parallel Systems,” Comput. Phys. Comm. 111, 14–26 (1998).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohebbi.

Additional information

Original Russian Text © R. Mohebbi, M. Nazari, M.H. Kayhani.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 1, pp. 64–79, January–February, 2016. Original article submitted October 29, 2012; revision submitted December 24, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, R., Nazari, M. & Kayhani, M.H. Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. J Appl Mech Tech Phy 57, 55–68 (2016). https://doi.org/10.1134/S0021894416010077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416010077

Keywords

Navigation