Skip to main content
Log in

Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This article presents a new asymptotic method to predict dynamic pull-in instability of nonlocal clamped–clamped carbon nanotubes (CNTs) near graphite sheets. Nonlinear governing equations of carbon nanotubes actuated by an electric field are derived. With due allowance for the van der Waals effects, the pull-in instability and the natural frequency–amplitude relationship are investigated by a powerful analytical method, namely, the parameter expansion method. It is demonstrated that retaining two terms in series expansions is sufficient to produce an acceptable solution. The obtained results from numerical methods verify the strength of the analytical procedure. The qualitative analysis of system dynamics shows that the equilibrium points of the autonomous system include center points and unstable saddle points. The phase portraits of the carbon nanotube actuator exhibit periodic and homoclinic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Li, E. T. Thostenson, and T. W. Chou. “Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review,” Composit. Sci. Technol. 68, 1227–1249 (2008).

    Article  Google Scholar 

  2. R. Soroush, A. Koochi, A. S. Kazemi, et al., “Investigating the Effect of Casimir and van der Waals Attractions on the Electrostatic Pull-in Instability of Nano-Actuators,” Phys. Scripta 82, 045801 (2010).

    Article  ADS  MATH  Google Scholar 

  3. A. Koochi, A. S. Kazemi, A. Noghrehabadi, et al., “New Approach to Model the Buckling and Stable Length of Multi Walled Carbon Nanotube Probes near Graphite Sheets,” Materials Design 32 (5), 2949–2955 (2011).

    Article  Google Scholar 

  4. Y. Cao, Y. Liang, S. Dong, and Y. Wang, “A Multi-Wall Carbon Nanotube (MWCNT) Relocation Technique for Atomic Force Microscopy (AFM) Samples,” Ultramicroscopy 103 (2), 103–108 (2005).

    Article  Google Scholar 

  5. A. Vahdati, M. Vahdati, and R. A. Mahdavinejad, “Simulating the Buckling Deflection of Carbon Nanotube-Made Detectors Used in Medical Detections by Applying a Continuum Mechanics Model,” Life Sci. J. 10 (1), 186–191 (2013).

    Google Scholar 

  6. M. Rasekh and S. E. Khadem, “Pull-in Analysis of an Electrostatically Actuated Nano-Cantilever Beam with Nonlinearity in Curvature and Inertia,” Int. J. Mech. Sci. 53 (2), 108–115 (2011).

    Article  Google Scholar 

  7. A. Ramezani, A. Alasty, and J. Akbari, “Closed-Form Solutions of the Pull-in Instability in Nano-Cantilevers under Electrostatic and Intermolecular Surface Forces,” Int. J. Solids Structures 44 (14/15), 4925–4941 (2007).

    Article  MATH  Google Scholar 

  8. A. Noghrehabadi, Y. Tadi Beni, A. Koochi, et al., “Closed-Form Approximations of the Pull-in Parameters and Stress Field of Electrostatic Cantilever Nano-Actuators Considering van der Waals Attraction,” Procedia Eng. 10, 3750–3756 (2011).

    Article  Google Scholar 

  9. J. L. Tsai and J. F. Tu, “Characterizing Mechanical Properties of Graphite Using Molecular Dynamics Simulation,” Materials Design 31 (1), 194–199 (2010).

    Article  Google Scholar 

  10. K. I. Tserpes, “Role of Intertube Spacing in the Pullout Forces of Double-Walled Carbon Nanotubes,” Materials Design 28 (7), 2197–2201 (2007).

    Article  Google Scholar 

  11. M. Desquenes, S. V. Rotkin, and N. R. Alaru, “Calculation of Pull-in Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches,” Nanotechnology 13, 120–131 (2002).

    Article  ADS  Google Scholar 

  12. R. C. Batra and A. Sears, “Continuum Models of Multi-Walled Carbon Nanotubes,” Int. J. Solids Structures 44, 7577–7596 (2007).

    Article  MATH  Google Scholar 

  13. S. S. Gupta and R. C. Batra, “Continuum Structures Equivalent in Normal Mode Vibrations to Single-Walled Carbon Nanotubes,” Comput. Materials Sci. 43, 715–723 (2008).

    Article  Google Scholar 

  14. L. A. Girifalco, M. Hodak, and R. S. Lee, “Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential,” Phys. Rev. B 62 (iss. 19), 13104 (2000).

    Article  ADS  Google Scholar 

  15. M. Janghorban and A. Zare, “Harmonic Differential Quadrature Method for Static Analysis of Functionally Graded Single Walled Carbon Nanotubes Based on Euler–Bernoulli Beam Theory,” Latin Amer. J. Solids Structures 9, 633–641 (2012).

    Article  Google Scholar 

  16. F. Daneshmand, M. Rafiei, S. R. Mohebpour, and M. Heshmati, “Stress and Strain-Inertia Gradient Elasticity in Free Vibration Analysis of Single Walled Carbon Nanotubes with First Order Shear Deformation Shell Theory,” Appl. Math. Modelling 37 (16/17), 7983–8003 (2013).

    Article  MathSciNet  Google Scholar 

  17. C. Ke, H. D. Espinosa, and N. Pugno, “Numerical Analysis of Nanotube Based NEMS Devices. Pt 2. Role of Finite Kinematics, Stretching and Charge Concentrations,” J. Appl. Mech. 72, 726–731 (2005).

    Article  ADS  MATH  Google Scholar 

  18. H. M. Sedighi, K. H. Shirazi, and J. Zare, “An Analytic Solution of Transversal Oscillation of Quintic Nonlinear Beam with Homotopy Analysis Method,” Int. J. Non-Linear Mech. 47, 777–784 (2012).

    Article  ADS  Google Scholar 

  19. H. M. Sedighi and K. H. Shirazi, “A New Approach to Analytical Solution of Cantilever Beam Vibration with Nonlinear Boundary Condition,” J. Comput. Nonlinear Dyn. 7, (3), 34502 (2012); DOI: 10.1115/1.4005924.

    Article  Google Scholar 

  20. H. M. Sedighi, K. H. Shirazi, and J. Zare, “Novel Equivalent Function for Deadzone Nonlinearity: Applied to Analytical Solution of Beam Vibration using He’s Parameter Expanding Method,” Latin Amer. J. Solids Structures 9, 443–451 (2012).

    Article  Google Scholar 

  21. J. H. He, “Max-Min Approach to Nonlinear Oscillators,” Int. J. Nonlinear Sci. Numer. Simulat. 9, 207–210 (2008).

    Google Scholar 

  22. M. Ghadimi, A. Barari, H. D. Kaliji, and G. Domairry, “Periodic Solutions for Highly Nonlinear Oscillation Systems,” Arch. Civil Mech. Eng. 12 (3), 389–395 (2012).

    Article  Google Scholar 

  23. H. M. Sedighi, K. H. Shirazi, and M. A. Attarzadeh, “A Study on the Quintic Nonlinear Beam Vibrations using Asymptotic Approximate Approaches,” Acta Astronaut. 91, 245–250 (2013).

    Article  ADS  Google Scholar 

  24. H. M. Sedighi, K. H. Shirazi, A. R. Noghrehabadi, and A. Yildirim, “Asymptotic Investigation of Buckled Beam Nonlinear Vibration,” Iran. J. Sci. Technol. Trans. Mech. Eng. 36, 107–116 (2012).

    Google Scholar 

  25. H. M. Sedighi, K. H. Shirazi, A. Reza, and J. Zare, “Accurate Modeling of Preload Discontinuity in the Analytical Approach of the Nonlinear Free Vibration of Beams,” Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci. 226 (10), 2474–2484 (2012); DOI: 10.1177/0954406211435196.

    Article  Google Scholar 

  26. H. M. Sedighi and K. H. Shirazi, “Asymptotic Approach for Nonlinear Vibrating Beams with Saturation Type Boundary Condition,” Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci. 227 (11), 2479–2486 (2013); DOI: 10.1177/0954406213475561.

    Article  Google Scholar 

  27. J. H. He, “Hamiltonian Approach to Nonlinear Oscillators,” Phys. Lett. A 374 (23), 2312–2314 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D. H. Shou and J. H. He, “Application of Parameter-Expanding Method to Strongly Nonlinear Oscillators,” Int. J. Nonlinear Sci. Numer. Simulat. 8 (1), 121–124 (2007).

    Article  Google Scholar 

  29. C. W. Lim, “On the Truth of Nanoscale for Nanobeams Based on Nonlocal Elastic Stress Field Theory: Equilibrium, Governing Equation and Static Deflection,” Appl. Math. Mech. 31, 37–54 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  30. O. Civalek and C. Demir, “Buckling and Bending Analysis of Cantilever Carbon Nanotubes using the Euler — Bernoulli Beam Theory Based on Non-Local Continuum Model,” Asian J. Civil Eng. 12 (5), 651–661 (2011).

    MathSciNet  Google Scholar 

  31. R. C. Batra, M. Porfiri, and D. Spinello, “Vibrations of Narrow Microbeams Predeformed by an Electric Field,” J. Sound Vibrat. 309, 600–612 (2008).

    Article  ADS  Google Scholar 

  32. Engineering Electromagnetics, Ed. by W. H. Hayt and J. A. Buck (McGraw Hill, New York, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Sedighi.

Additional information

Original Russian Text © Hamid M. Sedighi, Amin Yaghootian.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 1, pp. 105–117, January–February, 2016. Original article submitted July 16, 2013; revision submitted November 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, H.M., Yaghootian, A. Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity. J Appl Mech Tech Phy 57, 90–100 (2016). https://doi.org/10.1134/S0021894416010107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416010107

Keywords

Navigation