Skip to main content
Log in

Flow of a power-law nanofluid past a vertical stretching sheet with a convective boundary condition

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A boundary layer flow of a non-Newtonian fluid in the presence of nanoparticles is examined. The flow is caused by a vertical stretching sheet. Convergence of the solution obtained is checked. The values of velocity, temperature, skin friction, and Nusselt number in the boundary layer are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. S. Choi and J. A. Eastman, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” in Proc. of the 1995 ASME. Int. Mech. Eng. Congress and Exhibition, San Francisco, USA, November 12–17, 1995 (ASME, 1995), pp. 99–105.

    Google Scholar 

  2. G. Polidori, S. Fohanno, and C. T. Nguyen, “A Note on Heat Transfer Modelling of Newtonian Nanofluids in Laminar Free Convection,” Int. J. Thermal Sci. 46, 739–744 (2007).

    Article  Google Scholar 

  3. A. R. Moghadassi, S. M. Hosseini, D. Henneke, and A. Elkamel, “A Model of Nanofluids Effective Thermal Conductivity Based on Dimensionless Group,” J. Thermal Anal. Calorimetry 96, 81–84 (2009).

    Article  Google Scholar 

  4. S. U. S. Choi, Z. G. Zhang, W. Yu, et al., “Anomalously Thermal Conductivity Enhancement in Nanotube Suspensions,” Appl. Phys. Lett. 79, 2252–2254 (2001).

    Article  ADS  Google Scholar 

  5. M. Alinia, D. D. Ganji, and M. Gorji-Bandpy, “Numerical Study of Mixed Convection in an Inclined Two Sided Lid Driven Cavity Filled with Nanofluid using Two-Phase Mixture Model,” Int. Comm. Heat Mass Transfer 38, 1428–1435 (2011).

    Article  Google Scholar 

  6. T. Grosan and I. Pop, “Axisymmetric Mixed Convection Boundary Layer Flow Past a Vertical Cylinder in a Nanofluid,” Int. J. Heat Mass Transfer 54, 3139–3145 (2011).

    Article  MATH  Google Scholar 

  7. A. J. Chamkha and E. Abu-Nada, “Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled with Water–Al2O3 Nanofluid: Effect of Viscosity Models,” Eur. J. Mech., B: Fluids 36, 82–96 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. A. A. Hamad, “Analytical Solution of Natural Convection Flow of a Nanofluid over a Linearly Stretching Sheet in the Presence of Magnetic Field,” Int. Comm. Heat Mass Transfer 38, 487–492 (2011).

    Article  Google Scholar 

  9. H. F. Oztop, E. Abu-Nada, Y. Varol, and K. Al-Salem, “Computational Analysis of Non-Isothermal Temperature Distribution on Natural Convection in Nanofluid Filled Enclosures,” Superlattices Microstruct. 49, 453–467 (2011).

    Article  ADS  Google Scholar 

  10. C. C. Cho, C. L. Chen, and C. K. Chen, “Mixed Convection Heat Transfer Performance of Water-Based Nanofluids in Lid-Driven Cavity with Wavy Surfaces,” Int. J. Thermal Sci. 68, 181–190 (2013).

    Article  Google Scholar 

  11. M. Turkyilmazoglu, “Exact Analytical Solutions for Heat and Mass Transfer of MHD Slip Flow in Nanofluids,” Chem. Eng. Sci. 84, 182–187 (2012).

    Article  Google Scholar 

  12. M. Turkyilmazoglu and I. Pop, “Heat and Mass Transfer of Unsteady Natural Convection Flow of Some Nanofluids Past a Vertical Infinite Flat Plate with Radiation Effect,” Int. J. Heat Mass Transfer 59, 167–171 (2013).

    Article  Google Scholar 

  13. M. Sheikholeslami, M. Hatami, and D. D. Ganji, “Analytical Investigation of MHD Nanofluid Flow in a Semi- Porous Channel,” Powder Technol. 246, 327–336 (2013).

    Article  Google Scholar 

  14. W. Ibrahim and O. D. Makinde, “The Effect of Double Stratification on Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate,” Comput. Fluids 86, 433–441 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Sheikholeslami and D. D. Ganji, “Heat Transfer of Cu–Water Nanofluid Flow between Parallel Plates,” Powder Technol. 235, 873–879 (2013).

    Article  Google Scholar 

  16. O. D. Makinde and A. Aziz, “Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with a Convective Boundary Condition,” Int. J. Thermal Sci. 50, 1326–1332 (2011).

    Article  Google Scholar 

  17. M. A. A. Hamad and M. A. Bashir, “Boundary Layer Flow and Heat Transfer of Power-Law Non-Newtonian Nanofluid over Vertical Stretching Sheet,” World Appl. Sci. J. 7, 172–178 (2009).

    Google Scholar 

  18. F. M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied, and M. R. Eid, “Effect of Heat Generation/Absorption on Natural Convective Boundary-Layer Flow from a Vertical Cone Embedded in a Porous Medium Filled with a Non-Newtonian Nanofluid,” Int. Comm. Heat Mass Transfer 38, 1414–1420 (2011).

    Article  Google Scholar 

  19. M. Hatami and D. D. Ganji, “Heat Transfer and Flow Analysis for SA–TiO2 Non-Newtonian Nanofluid Passing Through the Porous Media between Two Coaxial Cylinders,” J. Molecular Liquids 188, 155–161 (2013).

    Article  Google Scholar 

  20. S. Nadeem, R. Mehmood, and N. S. Akbar, “Non-Orthogonal Stagnation Point Flow of a Nano Non-Newtonian Fluid towards a Stretching Surface with Heat Transfer,” Int. J. Heat Mass Transfer 57, 679–689 (2013).

    Article  Google Scholar 

  21. S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall–CRC Press, Boca Raton, 2003).

    Book  Google Scholar 

  22. M. Turkyilmazoglu, “Solution of the Thomas–Fermi Equation with a Convergent Approach,” Comm. Nonlinear Sci. Numer. Simulat. 17, 4097–4103 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. M. Rashidi, M. Keimanesh, and S. C. Rajvanshi, “Study of Pulsatile Flow in a Porous Annulus with the Homotopy Analysis Method,” Int. J. Numer. Methods Heat Fluid Flow 22, 971–989 (2012).

    Article  Google Scholar 

  24. S. Abbasbandy, M. S. Hashemi, and I. Hashim, “On Convergence of Homotopy Analysis Method and Its Application to Fractional Integro-Differential Equations,” Quaestiones Math. 36, 93–105 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Hayat, S. A. Shehzad, H. H. Al-Sulami, and S. Asghar, “Influence of Thermal Stratification on the Radiative Flow of Maxwell Fluid,” J. Brazilian Soc. Mech. Sci. Eng. 35, 381–389 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hayat.

Additional information

Original Russian Text © T. Hayat, M. Hussain, S.A. Shehzad, A. Alsaedi.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 1, pp. 199–206, January–February, 2016. Original article submitted November 28, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Hussain, M., Shehzad, S.A. et al. Flow of a power-law nanofluid past a vertical stretching sheet with a convective boundary condition. J Appl Mech Tech Phy 57, 173–179 (2016). https://doi.org/10.1134/S0021894416010193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416010193

Keywords

Navigation