Skip to main content
Log in

Advective flow in a rotating liquid film

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents a new exact solution of the Navier–Stokes equations in the Boussinesq approximation that describes thermocapillary advective flow in a slowly rotating horizontal layer of incompressible fluid with free boundaries. Such flow occurs in the case of linear temperature distribution over horizontal coordinates or in the case of heat flux distribution at the layer boundaries. The influence of the Taylor, Marangoni, Grashof, and Biot numbers on the flow and temperature velocity profiles is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Z. Gershuni, E. M. Zhukhovitskii, and A. A. Nepomnyashchii, Stability of Convective Flows (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. O. N. Goncharova and O. A. Kabov, “Gas Flow and Thermocapillary Effects on Fluid Flow Dynamics in a Horizontal Layer,” Microgravity Sci. Technol. 21 (1), 129–137 (2009).

    Article  MATH  Google Scholar 

  3. G. A. Ostroumov, Free Convection under the Conditions of an Internal Problem (Gostekhteoretizdat, Moscow, 1952) [in Russian].

    Google Scholar 

  4. R. B. Birikh, “Thermocapillary Convection in a Horizontal Layer of Liquid,” Prikl. Mekh. Tekh. Fiz. 7 (3), 69–72 (1966) [J. Appl. Mech. Tech. Phys. 7 (3), 43–44 (1966)].

    Google Scholar 

  5. V. K. Andreev, Birikh Solution of Convection Equations and Some of Its Generalizations, Preprint No. 1-10 (Inst. of Comput. Model., SB RAS, Krasnoyarsk, 2010).

    Google Scholar 

  6. V. K. Andreev and V. B. Bekezhanova, “Stability of Non-Isothermal Fluids (Review),” Prikl. Mekh. Tekh. Fiz. 54 (2), 3–20 (2013) [J. Appl. Mech. Tech. Phys. 54 (2), 171–184 (2013)].

    MATH  Google Scholar 

  7. V. V. Pukhnachev, “Unsteady Counterparts of the Birikh Solutions,” Izv. Alt. Gos. Univ., Nos. 1–2, 62–69 (2011).

    Google Scholar 

  8. S. N. Aristov and V. D. Zimin, “Advective Waves in a Rotating Spherical Layer,” Preprint No. 145 (Institute of Continuum Mechanics, Ural Branch, USSR Academy of Sciences, Sverdlovsk, 1986).

    Google Scholar 

  9. S. N. Aristov and A. M. Pichugin, “Flow and Heat Exchange in a Layer of a Viscous Conducting Fluid between Rotating Plates with Horizontal Gradients of Temperature in a Transverse Magnetic Field,” Prikl. Mekh. Tekh. Fiz. 31 (4), 124–128 (1990) [J. Appl. Mech. Tech. Phys. 31 (4), 627–630 (1990)].

    Google Scholar 

  10. S. N. Aristov and K. G. Shvarts, Vortex Flows of Advective Nature in a Rotating Fluid Layer (Perm University, Perm, 2006) [in Russian].

    Google Scholar 

  11. K. G. Shvarts, “Effect of Rotation on the Stability of Advective Flow in a Horizontal Fluid Layer for Low Prandtl Number,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 29–38 (2005).

    Google Scholar 

  12. D. G. Chikulaev and K. G. Shvarts, “Linear Stability of Advective Flow in a Rotating Horizontal Fluid Layer with Rigid Boundaries by Differential Sweep,” Vestn. Perm. Univ., Mat. Mekh. Inform. 3, 42–46 (2011).

    Google Scholar 

  13. D. G. Chikulaev and K. G. Shvarts, “Effect ofWeak Rotation on the Stability of Advective Flow in a Horizontal Fluid Layer with Rigid Boundaries for Low Prandtl Number,” Vestn. Perm. Univ., Fiz. 4, 188–192 (2012).

    Google Scholar 

  14. K. G. Shvarts and A. Boudlal, “Effect of Rotation on Stability of Advective Flow in Horizontal Liquid Layer with a Free Upper Boundary,” J. Phys. Conf. Ser. 216 (1), 012005 (2010).

    Article  ADS  Google Scholar 

  15. K. G. Shvarts, “Investigation of the Stability of Advective Flows in a Rotating Fluid Layer,” Vestn. Perm. Univ. Mat. Mekh. Inform. 1, 54–61 (2013).

    Google Scholar 

  16. R. V. Birikh, “Vibrational Convection in a Flat Layer with a Longitudinal Temperature Gradient,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 12–15 (1990).

    Google Scholar 

  17. A. Zebib, “Thermocapillary Instabilities with System Rotation,” Phys. Fluids 8 (12), 3209–3211 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. N. Aristov and P. G. Frik, “Dynamics of Large-Scale Flows in Thin Fluid Layers,” Preprint No. 99 (Ural Branch of the Academy of Sciences of USSR, Sverdlovsk, 1987).

    MATH  Google Scholar 

  19. S. N. Aristov and K. G. Shvarts, Vortex Flows in Thin Liquid Layers (Vyatka State University, Kirov, 2011) [in Russian].

    Google Scholar 

  20. H. F. Bauer and W. Eidel, “Axisymmetric Thermocapillary Convection in a Slowly Rotating Annular Cylindrical Container,” 34 (1), 79–90 (1998).

    Google Scholar 

  21. W. Y. Shi and N. Imaishi, “Thermocapillary Convection in a Shallow annular Pool of Silicone Oil,” Eng Sci. Rep. Kyushu Univ. 28 (1), 1–8 (2006).

    Google Scholar 

  22. K. G. Shvarts, “Stability of Thermocapillary Advective Flow in a Slowly Rotating Fluid Layer in Zero-Gravity,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 44–58 (2012).

    Google Scholar 

  23. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluid (Nauka, Moscow, 1972) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Aristov.

Additional information

Original Russian Text © S.N. Aristov, K.G. Shvarts.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 1, pp. 216–223, January–February, 2016. Original article submitted October 7, 2013; revision submitted October 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, S.N., Shvarts, K.G. Advective flow in a rotating liquid film. J Appl Mech Tech Phy 57, 188–194 (2016). https://doi.org/10.1134/S0021894416010211

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416010211

Keywords

Navigation