Skip to main content
Log in

Slip effects on a mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface with slip and viscous dissipation effects is investigated. The governing partial differential equations for the third-grade fluid are converted into a system of nonlinear ordinary differential equations by using a similarity transformation. The effects of various parameters, including the Weissenberg number, third-grade parameter, local Reynolds number, Prandtl number, Eckert number, mixed convection parameter, velocity slip, and thermal slip on the velocity and temperature profiles, local skin friction coefficient, and local Nusselt number are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Sparrow, R. Eichhom, and J. C. Gregg, “Combined Forced and Free Convection in a Boundary Layer Flow,” Phys. Fluids 2, 319–328 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. M. Sparrow and J. C. Gregg, “Buoyancy Effects in Forced Convection Flow and Heat Transfer,” J. Appl. Mech. 26, 133–138 (1959).

    MATH  Google Scholar 

  3. A. A. Szewczyk, “Combined Forced and Free Convection Laminar Flow,” J. Heat Transfer 86, 501–507 (1964).

    Article  Google Scholar 

  4. J. H. Merkin, “The Effect of Buoyancy Forces on the Boundary Layer Flow over a Semi-Infinite Vertical Plate in a Uniform Stream,” J. Fluid Mech. 35, 439–450 (1969).

    Article  ADS  MATH  Google Scholar 

  5. J. R. Lloyd and E. M. Sparrow, “Combined Forced and Free Convection Flow on Vertical Surfaces,” Int. J. Heat Mass Transfer 13, 434–438 (1970).

    Article  Google Scholar 

  6. P. H. Oosthuizen and R. Hart, “A Numerical Study of Laminar Combined Convective Flow over a Flat Plate,” J. Heat Transfer 95, 60–63 (1973).

    Article  Google Scholar 

  7. G. Wilks, “Combined Forced and Free Convective Flow on Vertical Surfaces,” Int. J. Heat Mass Transfer 16, 1958–1964 (1973).

    Article  MATH  Google Scholar 

  8. G. Tingwei, R. Bachrum, and M. Dagguent, “Influence de la Convective Natural le Sur la Convection Force Andes-sus D’une Surface Plane Vertical Voumise a un Flux de Rayonnement,” Int. J. Heat Mass Transfer 25, 1061–1065 (1982).

    Article  Google Scholar 

  9. M. S. Raju, X. R. Liu, and C. K. Law, “A Formulation of Combined Forced and Free Convection Past Horizontal and Vertical Surfaces,” Int. J. Heat Mass Transfer 27, 2215–2224 (1984).

    Article  MATH  Google Scholar 

  10. L. S. Yao, “Two-Dimensional Mixed Convection Along a Flat Plate,” J. Heat Transfer 190, 440–445 (1987).

    Article  Google Scholar 

  11. J. H. Merkin and T. Mahmood, “Mixed Convection Boundary Layer Similarity Solution Prescribed Heat Flux,” Z. Angew. Math. Phys. 40, 61–68 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Ramachandran, T. S. Chen, and B. F. Armaly, “Mixed Convection in Stagnation Flows Adjacent to Vertical Surfaces,” J. Heat Transfer 110, 373–377 (1988).

    Article  Google Scholar 

  13. C. D. S. Devi, H. S. Takhar, and G. Nath, “Unsteady Mixed Convection Flow in Stagnation Region Adjacent to a Vertical Surface,” Heat Mass Transfer 26, 71–79 (1991).

    Google Scholar 

  14. R. Nazar, N. Amin, D. Filip, and I. Pop, “Stagnation-Point Flow of a Micropolar Fluid Towards a Stretching Sheet,” Int. J. Non-Linear Mech. 39, 1227–1235 (2004).

    Article  MATH  Google Scholar 

  15. J. Zhu, L. C. Zheng, and Z. G. Zhang, “Analytical Solution to Stagnation-Point Flow and Heat Transfer over a Stretching Sheet Based on Homotopy Analysis,” Appl. Math. Mech. 30, 463–474 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Hayat, Z. Abbas, and I. Pop, “Mixed Convection in the Stagnation Point Flow Adjacent to a Vertical Surface in a Viscoelastic Fluid,” Int. J. Heat Mass Transfer 51, 3200–3206 (2008).

    Article  MATH  Google Scholar 

  17. D. Li, F. Labropulu, and I. Pop, “Mixed Convection Flow of a Viscoelastic Fluid near the Orthogonal Stagnation-Point on a Vertical Surface,” Int. J. Therm. Sci. 50, 1698–1705 (2011).

    Article  Google Scholar 

  18. C. Canuto, M. Y. Hossaini, A. Quartcroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1987).

    Google Scholar 

  19. G. S. Beavers and D. D. Joseph, “Boundary Conditions at a Naturally Permeable Wall,” Int. J. Fluid Mech. 30, 197–207 (1967).

    Article  ADS  Google Scholar 

  20. H. I. Andersson, “Slip Flow Past a Stretching Surface,” Acta Mech. 158, 121–125 (2002).

    Article  MATH  Google Scholar 

  21. F. Labropulu and D. Li, “Stagnation Point Flow of a Second Grade Fluid with Slip,” Int. J. Non-Linear Mech. 43, 941–947 (2008).

    Article  ADS  Google Scholar 

  22. K. Cao and J. Baker, “Slip Effects on Mixed Convective Flow and Heat Transfer from a Vertical Plate,” Int. J. Heat Mass Transfer 52, 3829–3841 (2009).

    Article  MATH  Google Scholar 

  23. S. D. Harris, D. B. Ingham, and I. Pop, “Mixed Convection Boundary-Layer Flow near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model with Slip,” Transport Porous Media 77, 267–285 (2009).

    Article  Google Scholar 

  24. K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Similarity Solution of Mixed Convective Boundary Layer Slip Flow over a Vertical Plate,” Ain Shams Eng. J. 4, 299–305 (2013).

    Article  Google Scholar 

  25. F. Aman, A. Ishak, and I. Pop, “Mixed Convection Boundary Layer Flow near Stagnation Point on Vertical Surface with Slip,” Appl. Math. Mech. 32, 1599–1606 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Das, “Slip Effects on MHD Mixed Convection Stagnation Point Flow of a Micropolar Fluid Towards a Shrinking Vertical Sheet,” Comput. Math. Appl. 63, 255–267 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. R. Rajagopal and T. Y. Na, “On Stokes Problem for a Non-Newtonian Fluid,” Acta Mech. 48, 233–239 (1983).

    Article  MATH  Google Scholar 

  28. R. L. Fosdick and K. R. Rajagopal, “Thermodynamics and Stability of Fluids of Third Grade,” Proc. Roy. Soc. London, Ser. A 369, 351–377 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Pakdemirli, “The Boundary Layer Equations of Third Grade Fluids,” Int. J. Non-Linear Mech. 27, 785–793 (1992).

    Article  ADS  MATH  Google Scholar 

  30. M. Yurusoy and M. Pakdemirli, “Approximate Analytical Solutions for the Flow of a Third-Grade Fluid in a Pipe,” Int. J. Non-Linear Mech. 37, 187–195 (2002).

    Article  MATH  Google Scholar 

  31. Y. Jaluria, Computer Methods for Engineering (Allyn and Bacon, Boston, 1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Javed.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 3, pp. 159–170, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, T., Mustafa, I. Slip effects on a mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface. J Appl Mech Tech Phy 57, 527–536 (2016). https://doi.org/10.1134/S0021894416030172

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416030172

Keywords

Navigation