Skip to main content
Log in

Numerical and analytical study of the propagation of thermoelastic waves in a medium with heat-flux relaxation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The thermoelastic problem of laser exposure of metals and dielectrics is studied taking into account the finite speed of propagation of thermal waves and using a numerical finite-difference algorithm. The resulting numerical solution is compared with the analytical one. The problem is solved in coupled and uncoupled formulations. The solutions of the hyperbolic thermoelastic problem are compared with the solutions of the classical problem. Analytical expressions are obtained for the propagation speeds of the thermoelastic wave components. Times are determined at which the difference between the solutions of the hyperbolic and classical thermoelastic problems can be detected experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Shashkov, V. A. Bubnov, and S. Yu. Yanovskii, Conduction Wave Phenomena: System-Structural Approach (Nauka Tekhnika, Minsk, 1993) [in Russian].

    Google Scholar 

  2. D. Jou, J. Casas-Vzquez, and G. Lebon, “Extended Irreversible Thermodynamics,” Rep. Prog. Phys. 51, 1105–1179 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Cattaneo, “Sulla Coduzione del Calone,” Atti Sem. Mat. Fis. Univ. Modena, No. 3, 83 (1948).

    MathSciNet  Google Scholar 

  4. C. Cattaneo, “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation,” C. R. Acad. Sci. Paris, Ser. I: Math. 247, 431–433 (1958).

    MathSciNet  MATH  Google Scholar 

  5. P. Vernotte, “Les Paradoxes de la Theorie Continue de l’Equation de la Chaleur,” C. R. Acad. Sci. Paris, Ser. I: Math. 246, 3154–3155 (1958).

    MathSciNet  MATH  Google Scholar 

  6. M. Chester, “Second Sound in Solids,” Phys. Rev., No. 131, 2013–2015 (1963).

    Article  ADS  Google Scholar 

  7. S. Galovic and D. Kotoski, “Photothermal Wave Propagation in Media with Thermal Memory,” J. Appl. Phys. 93 (5), 3063–3070 (2003).

    Article  ADS  Google Scholar 

  8. A. Vedavarz, S. Kumar, and M. K. Moallemi, “Significance of Non-Fourier Heat Waves in Conduction,” Trans. ASME, J. Heat Transfer 116 (1), 221–224 (1994).

    Article  Google Scholar 

  9. M. N. Ozisik and D. Y. Tzou, “On the Wave Theory in Heat Conduction,” Trans. ASME, J. Heat Transfer 116 (3), 526–535 (1994).

    Article  Google Scholar 

  10. W. Kaminski, “Hyperbolic Heat Conduction Equation for Materials with a Non-Homogeneous Inner Structure,” Trans. ASME, J. Heat Transfer 112, 555–560 (1990).

    Article  Google Scholar 

  11. W. Roetzel, N. Putra, and K. Sarit, “Das Experiment and Analysis for Non-Fourier Conduction in Materials with Non-Homogeneous Inner Structure,” Int. J. Thermal Sci. 42, 541–552 (2003).

    Article  Google Scholar 

  12. K. V. Poletkin, G. G. Gurzadyan, J. Shang, and V. Kulish, “Ultrafast Heat Transfer on Nanoscale in Thin Gold Films,” Appl. Phys. B 107, 137–143 (2012).

    Article  ADS  Google Scholar 

  13. N. V. Vovnenko, B. A. Zimin, and Yu. V. Sud’enkov, “Nonequilibrium Processes of Movement of a Metal Surface Exposed to Sub-Microsecond Laser Pulses,” Zh. Tekh. Fiz. 80 (7), 41–45 (2010).

    Google Scholar 

  14. Yu. B. Sud’enkov and A. I. Pavlishin, “Abnormally High Propagation Speeds of Nanosecond Pressure Pulses in Metal Foils,” Pis’ma Zh. Tekh. Fiz. 29 (12), 14–20 (2003).

    Google Scholar 

  15. W. Nowacki, Dynamic Problems of Thermoelasticity (Mir, Moscow, 1970) [Russian translation].

    MATH  Google Scholar 

  16. H. Lord and Y. Shulman, “A Generalized Dynamical Theory of Thermoelasticity,” J. Mech. Phys. Solids, No. 15, 299–309 (1967).

    Article  ADS  MATH  Google Scholar 

  17. Ts. Ivanov and Yu. K. Engel’brekht, “Thermoelasticity Models Taking into account a Finite Heat Propagation Rate,” Inzh.-Fiz. Zh., No. 35, 344–351 (1978).

    Google Scholar 

  18. E. A. Ivanova, “Derivation of Theory of Thermoviscoelasticity by Means of Two-Component Medium,” Acta Mech. 215 (1–4), 261–286 (2010).

    Article  MATH  Google Scholar 

  19. E. A. Ivanova, “On One Model of Generalised Continuum and its Thermodynamical Interpretation,” in Mechanics of Generalized Continua (Springer, Berlin, 2011), pp. 151–174.

    Chapter  Google Scholar 

  20. E. A. Ivanova, “Derivation of Theory of Thermoviscoelasticity by Means of Two-Component Cosserat Continuum,” Technische Mechanik 32 (2–5), 273–286 (2012).

    MathSciNet  Google Scholar 

  21. E. A. Ivanova, “Description of Mechanism of Thermal Conduction and Internal Damping by Means of Two Component Cosserat Continuum,” Acta Mech. 225 (3), 757–795 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Y. Tzou, Macro-to-Microscale Heat Transfer. The Lagging Behavior (Taylor and Francis, New York, 1997).

    Google Scholar 

  23. A. E. Green and P. M. Naghdi, “On Undamped Heat Wave in Elastic Solids,” J. Thermal Stresses 15 (2), 253–264 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. B. Babenkov, “Propagation of Harmonic Perturbations in a Thermoelastic Medium with Heat Relaxation,” Prikl. Mekh. Tekh. Fiz. 54 (2), 126–137 (2013) [J. Appl. Mech. Tech. Phys. 54 (2), 277–286 (2013)].

    MATH  Google Scholar 

  25. M. B. Babenkov, “Analysis of Dispersion Relations of a Coupled Thermoelastic Problem with Regard to Heat Flux Relaxation,” Prikl. Mekh. Tekh. Fiz. 52 (6), 112–121 (2011) [J. Appl. Mech. Tech. Phys. 52 (6), 941–949 (2011)].

    MATH  Google Scholar 

  26. M. B. Babenkov and E. A. Ivanova, “Analysis of the Wave Propagation Processes in Heat Transfer Problem of the Hyperbolic Type,” Continuum Mech. Thermodyn. 26 (4) 483–502 (2013); DOI: 10.1007/s00161-013-0315-8.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. K. L. Muratikov, “Behavior of Temperature Waves in Solids in the Description of Heat Conduction by a Hyperbolic Equation,” Pisma Zh. Tekh. Fiz. 21 (12), 88–94 (1995).

    Google Scholar 

  28. A. N. Magunov, “Laser Thermometry of Solids: State of the Art and Problems,” Measurement Techniques 45 (2), 173–181 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Vitokhin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 3, pp. 171–185, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitokhin, E.Y., Babenkov, M.B. Numerical and analytical study of the propagation of thermoelastic waves in a medium with heat-flux relaxation. J Appl Mech Tech Phy 57, 537–549 (2016). https://doi.org/10.1134/S0021894416030184

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416030184

Keywords

Navigation