Skip to main content
Log in

Influence of thermal radiation and Joule heating in the Eyring–Powell fluid flow with the Soret and Dufour effects

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A two-dimensional magnetohydrodynamic boundary layer flow of the Eyring–Powell fluid on a stretching surface in the presence of thermal radiation and Joule heating is analyzed. The Soret and Dufour effects are taken into account. Partial differential equations are reduced to a system of ordinary differential equations, and series solutions of the resulting system are derived. Velocity, temperature, and concentration profiles are obtained. The skin friction coefficient and the local Nusselt and Sherwood numbers are computed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jalil and S. Asghar, “Flow of Power-Law Fluid over a Stretching Surface. A Lie Group Analysis” Int. J. Non-Linear Mech. 48, 65–71 (2013).

    Article  ADS  Google Scholar 

  2. L. Zheng, Y. Liu, and X. Zhang, “Slip Effects on MHD Flow of a Generalized Oldroyd-B Fluid with Fractional Derivative” Nonlinear Anal.: Real World Appl. 13, 513–523 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. J. Chamkha, S. Abbasbandy, A. M. Rashad, and K. Vajravelu, “Radiation Effects on Mixed Convection about a Cone Embedded in a Porous Medium Filled with a Nanofluid” Meccanica 48, 275–285 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Keimanesh, M. M. Rashidi, A. J. Chamkha, and R. Jafari, “Study of a Third Grade non-Newtonian Fluid Flow between Two Parallel Plates Using the Multi-Step Differential Transform Method” Comput. Math. Appl. 62, 2871–2891 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Li, L. Zheng, Y. Zhang, et al., “Helical Flows of a Heated Generalized Oldroyd-B Fluid Subject to a Time-Dependent Shear Stress in Porous Medium” Comm. Nonlinear Sci. Numer. Simulat. 17, 5026–5041 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. Wang and W. C. Tan, “Stability Analysis of Soret-Driven Double-Diffusive Convection of Maxwell Fluid in a Porous Medium” Int. J. Heat Fluid Flow 32, 88–94 (2011).

    Article  Google Scholar 

  7. T. Hayat, Z. Iqbal, M. Mustafa, and A. Alsaedi, “Momentum and Heat Transfer of an Upper-ConvectedMaxwell Fluid over a Moving Surface with Convective Boundary Conditions” Nuclear Eng. Design 252, 242–247 (2012).

    Article  Google Scholar 

  8. M. Jamil, C. Fetecau, and C. Fetecau, “Unsteady Flow of Viscoelastic Fluid between Two Cylinders Using Fractional Maxwell Model” Acta Mech. Sinica (English Ed.) 28, 274–280 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Jamil and C. Fetecau, “Starting Solutions for the Motion of a Generalized Burgers’ Fluid between Coaxial Cylinders” Boundary Value Problems, No. 14. (2012); DOI: 10.1186/1687-2770-2012-14.

  10. T. Hayat, M. Hussain, S. Nadeem, and S. Mesloub, “Falkner–Skan Wedge Flow of a Power-Law Fluid with Mixed Convection and Porous Medium” Comput. Fluids 49, 22–28 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Hayat and M. Qasim, “Influence of Thermal Radiation and Joule Heating on MHD Flow of a Maxwell Fluid in the Presence of Thermophoresis” Int. J. Heat Mass Transfer 53, 4780–4788 (2010).

    Article  MATH  Google Scholar 

  12. T. Hayat and A. Alsaedi, “On Thermal Radiation and Joule Heating Effects in MHD Flow of an Oldroyd-B Fluid with Thermophoresis” Arab. J. Sci. Eng. 36, 1113–1124 (2011).

    Article  Google Scholar 

  13. M. M. Rashidi, S. A. Mohimanian pour, and S. Abbasbandy, “Analytic Approximate Solutions for Heat Transfer of a Micropolar Fluid through a Porous Medium with Radiation” Comm. Nonlinear Sci. Numer. Simulat. 16, 1874–1889 (2011).

    Article  ADS  Google Scholar 

  14. M. Turkyilmazoglu, “Thermal Radiation Effects on the Time-Dependent MHD Permeable Flow Having Variable Viscosity” Int. J. Thermal Sci. 50, 88–96 (2011).

    Article  Google Scholar 

  15. M. Patel and M. G. Timol, “Numerical Treatment of Powell–Eyring Fluid Flow Using Method of Satisfaction of Asymptotic Boundary Conditions” J. Appl. Numer. Math. 59, 2584–2592 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Hayat, Z. Iqbal, M. Qasim, and S. Obaidat, “Steady Flow of Eyring–Powell Fluid over a Moving Surface with Convective Boundary Conditions” Int. J. Heat Mass Transfer 55, 1817–1822 (2012).

    Article  Google Scholar 

  17. T. Hayat, S. Ali, M. Awais, and S. Obaidat, “Stagnation Point Flow of Burgers’ Fluid over a Stretching Surface” Progr. Comput. Fluid Dyn. 13, 48–53 (2013).

    Article  MathSciNet  Google Scholar 

  18. S. J. Liao, “On the Homotopy Analysis Method for Nonlinear Problems” Appl. Math. Comput. 147, 499–513 (2004).

    MathSciNet  MATH  Google Scholar 

  19. M. Maleki, S. A. M. Tonekaboni, and S. Abbasbandy, “A Homotopy Analysis Solution to Large Deformation of Beams under Static Arbitrary Distributed Load” Appl. Math. Modelling 38 (1), 355–368 (2013).

    Article  MathSciNet  Google Scholar 

  20. M. M. Rashidi et al., “Homotopy Study of Buoyancy-Induced Flow of Non-Newtonian Fluids over a Non-Isothermal Surface in a Porous Medium” Int. J. Appl. Math. Mech., No. 8, 34–52 (2012).

    Google Scholar 

  21. T. Hayat, S. A. Shehzad, and A. Alsaedi, “Soret and Dufour Effects on Magnetohydrodynamic (MHD) Flow of Casson Fluid” Appl. Math. Mech. (English Ed.) 33, 1299–1310 (2012).

    MathSciNet  MATH  Google Scholar 

  22. Y. Qian and S. Chen, “Accurate Approximate Analytical Solutions for Multi-Degree-of-Freedom Coupled van der Pol–Duffing Oscillators by Homotopy Analysis Method” Comm. Nonlinear Sci. Numer. Simulat. 15, 3113–3130 (2010).

    Article  ADS  MATH  Google Scholar 

  23. O. A. Arqub and A. El-Ajou, “Solution of the Fractional Epidemic Model by Homotopy Analysis Method” J. King Saud Univ. 25, 73–81 (2013).

    Article  Google Scholar 

  24. T. Hayat, M. Mustafa, and S. Obaidat, “Soret and Dufour Effects on the Stagnation-Point Flow of a Micropolar Fluid Toward a Stretching Sheet” Trans. ASME, J. Fluids Eng. 133, 021202 (2011).

    Article  Google Scholar 

  25. M. Turkyilmazoglu, “Solution of the Thomas–Fermi Equation with a Convergent Approach” Comm. Nonlinear Sci. Numer. Simulat. 17, 4097–4103 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hayat.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 6, pp. 104–114, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Ali, S., Alsaedi, A. et al. Influence of thermal radiation and Joule heating in the Eyring–Powell fluid flow with the Soret and Dufour effects. J Appl Mech Tech Phy 57, 1051–1060 (2016). https://doi.org/10.1134/S0021894416060122

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416060122

Keywords

Navigation