Skip to main content
Log in

The effect of modulators of large-conductance Ca2+-modulated K+ channels on rat AS-30D ascites hepatoma cells and isolated liver mitochondria treated with Cd2+

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

ATP-producing cell organelles, mitochondria, are a primary target of heavy metals, major environmental pollutants causing a variety of diseases and pathologies. The mechanism of heavy metal toxic effect was established to include changes both in the intracellular production of reactive oxygen species (ROS) and mitochondrial dysfunction due to respiratory chain disorders and activation of the Ca2+-dependent non-selective pore in the mitochondrial inner membrane. Te role of other ion channels including such selective potassium channels as large-conductance Ca2+-activated K+ channels, BK(Ca), supposed to be cytoprotective, remains poorly studied. In the present work conducted on rat AS-30D ascites hepatoma cells and liver mitochondria, we studied the effect of different BK(Ca) effectors in the presence or absence of Cd2+ ions in the incubation medium, specifically of two activators, NS1619 and NS004, and one blocker, paxilline. After 24-h incubation of AS-30D cells with 10 μM of both NS1619 and NS004, the number of apoptized cells was found to increase significantly versus control; moreover, the presence of these BK(Ca) activators in the incubation medium exerted an additive effect on Cd2+-induced apoptosis of AS-30D cells. The same concentration of NS1619 and NS004 did not affect significantly AS-30D cellular respiration after 3, 24 and 48 h of incubation, although increasing after 3 h the intracellular production of ROS. In experiments on isolated rat liver mitochondria, NS1619 and NS004 added at the same concentration to the KCl-containing medium did not affect the rates of respiratory State 3 (after Chance) and maximally uncoupled respiration (both in the presence and absence of Cd2+); concurrently, they induced a weak uncoupling effect by increasing both basal and resting-state (State 3 after Chance) respirations, and also enhanced a high-amplitude mitochondrial swelling induced by Cd2+ in this medium. Paxilline (at 1μM) was shown to reduce the mortality of AS-30D cells after 3-, 24- and 48 h-incubation in the presence of Cd2+ and to increase the intracellular ROS production in control after 3 and 24 h of exposure. Paxilline added at a concentration exerting a long-term protective effect did not affect cellular respiration of rat AS-30D cells and isolated liver mitochondria (both in the presence and absence of Cd2+) and did not reduce mitochondrial swelling observed in the presence of Cd2+ and BK(Ca) activators. Possible molecular action mechanisms of BK(Ca) modulators are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szewczyk, A. and Wojtczak, L., Mitochondria as a pharmacological target, Pharmacol. Rev., 2002, vol. 54, no. 1, pp. 101–127.

    Article  CAS  PubMed  Google Scholar 

  2. Szewczyk, A., Kajma, A., Malinska, D., Wrzosek, A., Bednarczyk, P., Zablocka, B., and Dolowy, K., Pharmacology of mitochondrial potassium channels: dark side of the field, FEBS Lett., 2010, vol. 584, no. 10, pp. 2063–2069.

    Article  CAS  PubMed  Google Scholar 

  3. Leanza, L., Biasutto, L., Managò, A., Gulbins, E., Zoratti, M., and Szabò, I., Intracellular ion channels and cancer, Front. Physiol., 2013, vol. 4, p. 227.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Meyer, J.N., Leung, M.C., Rooney, J.P., Sendoel, A., Hengartner, M.O., Kisby, G.E., and Bess, A.S., Mitochondria as a target of environmental toxicants, Toxicol. Sci., 2013, vol. 134, no. 1, pp. 1–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Belyaeva, E.A., Dymkowska, D., Wieckowski, M.R., and Wojtczak, L., Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells, Toxicol. Appl. Pharmacol., 2008, vol. 231, no. 1, pp. 34–42.

    Article  CAS  PubMed  Google Scholar 

  6. Thévenod, F. and Lee, W.K., Cadmium and cellular signaling cascades: interactions between cell death and survival pathways, Arch. Toxicol., 2013, vol. 87, no. 10, pp. 1743–1786.

    Article  PubMed  Google Scholar 

  7. InSug, O., Datar, S., Koch, C.J., Shapiro, I.M., and Shenker, B.J., Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve, Toxicology, 1997, vol. 124, pp. 211–224.

    Article  CAS  PubMed  Google Scholar 

  8. Krumschnabel, G., Manzl, C., Berger, C., and Hofer, B., Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes, Toxicol. Appl. Pharmacol., 2005, vol. 209, pp. 62–73.

    Article  CAS  PubMed  Google Scholar 

  9. Belyaeva, E.A., Dymkowska, D., Wieckowski, M.R., and Wojtczak, L., Reactive oxygen species produced by the mitochondrial respiratory chain are involved in Cd2+-induced injury of rat ascites hepatoma AS-30D cells, Biochim. Biophys. Acta., 2006, vol. 1757, no. 12, pp. 1568–1574.

    Article  CAS  PubMed  Google Scholar 

  10. Galluzzi, L., Vitale, I., Senovilla, L., Eisenberg, T., Carmona-Gutierrez, D., Vacchelli, E., Robert, T., Ripoche, H., Jägemann, N., Paccard, C., Servant, N., Hupé, P., Lazar, V., Dessen, P., Barillot, E., Zischka, H., Madeo, F., and Kroemer, G., Independent transcriptional reprogramming and apoptosis induction by cisplatin, Cell Cycle, 2012, vol. 11, no. 18, pp. 3472–3480.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Garlid, K.D., Costa, A.D., Quinlan, C.L., Pierre, S.V., and Dos Santos, P., Cardioprotective signaling to mitochondria, J. Mol. Cell Cardiol., 2009, vol. 46, no. 6, pp. 858–866.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Montoya-Pérez, R., Saavedra-Molina, A., Trujillo, X., Huerta, M., Andrade, F., Sánchez-Pastor, E., and Ortiz, M., Inhibition of oxygen consumption in skeletal muscle-derived mitochondria by pinacidil, diazoxide, and glibenclamide, but not by 5-hydroxydecanoate, J. Bioenerg. Biomembr., 2010, vol. 42, no. 1, pp. 21–27.

    Article  PubMed  Google Scholar 

  13. Cheng, Y., Debska-Vielhaber, G., and Siemen, D., Interaction of mitochondrial potassium channels with the permeability transition pore, FEBS Lett., 2010, vol. 584, no. 10, pp. 2005–2012.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, Y., Gulbins, E., and Siemen, D., Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel, Cell. Physiol. Biochem., 2011, vol. 27, no. 3–4, pp. 191–200.

    Article  CAS  PubMed  Google Scholar 

  15. O-Uchi, J., Ryu, S.Y., Jhun, B.S., Hurst, S., and Sheu, S.S., Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling, Antioxid. Redox Signal., 2014, vol. 21, no. 6, pp. 987–1006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Belyaeva, E.A., Brailovskaya, I.V., and Korotkov, S.M., Is mitochondrial ATP-sensitive K+ channel involved in heavy metal-induced mitochondrial dysfunction? Mitochondrion, 2005, vol. 5, pp. 222–223.

    Google Scholar 

  17. Belyaeva, E.A., Effect of diazoxide on AS-30D rat ascites hepatoma cells treated by Cd2+, J. Evol. Biochem. Physiol., 2013, vol. 49, no. 5, pp. 489–497.

    Article  CAS  Google Scholar 

  18. Lee, W.K., Spielmann, M., Bork, U., and Thévenod, F., Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force, Am. J. Physiol. Cell. Physiol., 2005, vol. 289, no. 3, pp. 656–664.

    Article  Google Scholar 

  19. Korotkov, S.M., Nesterov, V.P., Emelyanova, L.V., and Ryabchikov, N.N., The issue of SHgroup involvement in diazoxide interaction with rat heart mitochondrial inner membrane, DAN, 2007, vol. 415, no. 5, pp. 691–695.

    Google Scholar 

  20. Siemen, D., Loupatatzis, C., Borecky, J., Gulbins, E., and Lang, F., Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line, Biochem. Biophys. Res. Commun., 1999, vol. 257, no. 2, pp. 549–554.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, S.N., Large-conductance Ca2+- activated K+ channels: physiological role and pharmacology, Curr. Med. Chem., 2003, vol. 10, no. 8, pp. 649–661.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, W., Liu, Y., Wang, S., McDonald, T., Van Eyk, J.E., Sidor, A., and O’Rourke, B., Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane, Science, 2002, vol. 298, no. 5595, pp. 1029–1033.

    Article  CAS  PubMed  Google Scholar 

  23. Ohya, S., Kuwata, Y., Sakamoto, K., Muraki, K., and Imaizumi, Y., Cardioprotective effects of estradiol include the activation of large-conductance Ca2+-activated K+ channels in cardiac mitochondria, Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 289, no. 4, pp. H1635–1642.

    Article  Google Scholar 

  24. Skalska, J., Piwonska, M., Wyroba, E., Surmacz, L., Wieczorek, R., Koszela-Piotrowska, I., Zielinska, J., Bednarczyk, P., Dolowy, K., Wilczynski, G.M., Szewczyk, A., and Kunz, W.S., A novel potassium channel in skeletal muscle mitochondria, Biochim. Biophys. Acta, 2008, vol. 1777, no. 7–8, pp. 651–659.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, Y., Gu, X.Q., Bednarczyk, P., Wiedemann, F.R., Haddad, G.G., and Siemen, D., Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore, Cell. Physiol. Biochem., 2008, vol. 22, no. 1–4, pp. 127–136.

    Article  CAS  PubMed  Google Scholar 

  26. Stumpner, J., Lange, M., Beck, A., Smul, T.M., Lotz, C.A., Kehl, F., Roewer, N., and Redel, A., Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels: role of the mitochondrial permeability transition pore, Br. J. Anaesth., 2012, vol. 108, no. 4, pp. 594–601.

    Article  CAS  PubMed  Google Scholar 

  27. Szabò, I., Leanza, L., Gulbins, E., and Zoratti, M., Physiology of potassium channels in the inner membrane of mitochondria, Pflügers Arch., 2012, vol. 463, no. 2, pp. 231–246.

    Article  PubMed  Google Scholar 

  28. Shintani, Y., Node, K., Asanuma, H., Sanada, S., Takashima, S., Asano, Y., Liao, Y., Fujita, M., Hirata, A., Shinozaki, Y., Fukushima, T., Nagamachi, Y., Okuda, H., Kim, J., Tomoike, H., Hori, M., and Kitakaze, M., Opening of Ca2+-activated K+ channels is involved in ischemic preconditioning in canine hearts, Mol. Cell. Cardiol., 2004, vol. 37, no. 6, pp. 1213–1218.

    CAS  Google Scholar 

  29. Cao, C.M., Chen, M., and Wong, T.M., The K(Ca) channel as a trigger for the cardioprotection induced by kappa-opioid receptor stimulation—its relationship with protein kinase C, Br. J. Pharmacol., 2005, vol. 145, no. 7, pp. 984–991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gao, Q., Zhang, S.Z., Cao, C.M., Bruce, I.C., and Xia, Q., The mitochondrial permeability transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection conferred by tumor necrosis factor-alpha, Cytokine, 2005, vol. 32, no. 5, pp. 199–205.

    Article  CAS  PubMed  Google Scholar 

  31. Sato, T., Saito, T., Saegusa, N., and Nakaya, H., Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A., Circulation, 2005, vol. 111, no. 2, pp. 198–203.

    Article  CAS  PubMed  Google Scholar 

  32. Stowe, D.F., Aldakkak, M., Camara, A.K., Riess, M.L., Heinen, A., Varadarajan, S.G., and Jiang, M.T., Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation, Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 290, no. 1, pp. H434–H440.

    Article  Google Scholar 

  33. Sakamoto, K., Ohya, S., Muraki, K., and Imaizumi, Y., A novel opener of large-conductance Ca2+-activated K+ (BK) channel reduces ischemic injury in rat cardiac myocytes by activating mitochondrial K(Ca) channel, J. Pharmacol. Sci., 2008, vol. 108, no. 1, pp. 135–139.

    Article  CAS  PubMed  Google Scholar 

  34. Aon, M.A., Cortassa, S., Wei, A.C., Grunnet, M., and O’Rourke, B., Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria, Biochim. Biophys. Acta, 2010, vol. 1797, no. 1, pp. 71–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Heinen, A., Aldakkak, M., Stowe, D.F., Rhodes, S.S., Riess, M.L., Varadarajan, S.G., and Camara, A.K., Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels, Am. J. Physiol. Heart Circ. Physiol., 2007, vol. 293, no. 3, pp. H1400–H1407.

    Article  CAS  PubMed  Google Scholar 

  36. Kulawiak, B., Kudin, A.P., Szewczyk, A., and Kunz, W.S., BK channel openers inhibit ROS production of isolated rat brain mitochondria, Exp. Neurol., 2008, vol. 212, no. 2, pp. 543–547.

    Article  CAS  PubMed  Google Scholar 

  37. Singh, H., Stefani, E., and Toro, L., Intracellular BK(Ca) (iBK(Ca)) channels, J. Physiol., 2012, vol. 590, no. 23, pp. 5937–5947.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bednarczyk, P., Barker, G.D., and Halestrap, A.P., Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria, Biochim. Biophys. Acta, 2008, vol. 1777, no. 6, pp. 540–548.

    Article  CAS  PubMed  Google Scholar 

  39. Cancherini, D.V., Queliconi, B.B., and Kowaltowski, A.J., Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria, Cardiovasc. Res., 2007, vol. 73, no. 4, pp. 720–728.

    Article  CAS  PubMed  Google Scholar 

  40. Aldakkak, M., Stowe, D.F., Cheng, Q., Kwok, W.M., and Camara, A.K., Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening, Am. J. Physiol. Cell Physiol., 2010, vol. 298, no. 3, pp. C530–C541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Belyaeva, E.A., Glazunov, V.V., and Korotkov, S.M., Cyclosporin A-sensitive permeability transition pore is involved in Cd(2+)-induced dysfunction of isolated rat liver mitochondria: doubts no more, Arch. Biochem. Biophys., 2002, vol. 405, no. 2, pp. 252–264.

    Article  CAS  PubMed  Google Scholar 

  42. Belyaeva, E.A., Korotkov, S.M., and Saris, N.-E., In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction: a comparison of copper and mercury with cadmium, J. Trace Elem. Med. Biol., 2011, vol. 25, no. 1, pp. S63–S73.

    Google Scholar 

  43. Bai, J. and Cederbaum, A.I., Cycloheximide protects HepG2 cells from serum withdrawal-induced apoptosis by decreasing p53 and phosphorylated p53 levels, J. Pharmacol. Exp. Ther., 2006, vol. 319, pp. 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  44. Nicoletti, I., Miglioratti, G., Pagliacci, M.C., Grignani, F., and Riccardi, C., A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry, J. Immunol. Meth., 1991, vol. 139, no. 2, pp. 1271–1279.

    Article  Google Scholar 

  45. Sancho, P., Fernández, C., Yuste, V.J., Amrán, D., Ramos, A.M., de Blas, E., Susin, S.A., and Aller, P., Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress, Apotosis, 2006, vol. 11, pp. 673–686.

    Article  CAS  Google Scholar 

  46. Menon, S.G., Sarsour, E.H., Spitz, D.R., Higashikubo, R., Sturm, M., Zhang, H., and Goswami, P.C., Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle, Cancer Research, 2003, vol. 63, no. 9, pp. 2109–2117.

    CAS  PubMed  Google Scholar 

  47. Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G., and Franceschi, C., A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine iodide (JC-1), Biochem. Biophys. Res. Comm., 1993, vol. 197, no. 1, pp. 40–45.

    Article  CAS  PubMed  Google Scholar 

  48. Brand, M.D. and Nicholls, D.G., Assessing mitochondrial dysfunction in cells, Biochem. J., 2011, vol. 435, no. 2, pp. 297–312, Erratum in: Biochem. J., 2011, vol. 437, no. 3, p. 575.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Augustynek, B., Kudin, A.P., Bednarczyk, P., Szewczyk, A., and Kunz, W.S., Hemin inhibits the large conductance potassium channel in brain mitochondria: A putative novel mechanism of neurodegeneration, Exp. Neurol., 2014, vol. 257C, pp. 70–75.

    Article  CAS  PubMed  Google Scholar 

  50. Debska-Vielhaber, G., Godlewski, M.M., Kicinska, A., Skalska, J., Kulawiak, B., Piwonska, M., Zablocki, K., Kunz, W.S., Szewczyk, A., and Motyl, T., Large-conductance K+ channel openers induce death of human glioma cells, J. Physiol. Pharmacol., 2009, vol. 60, no. 4, pp. 27–36.

    CAS  PubMed  Google Scholar 

  51. Kim, S.J., Park, J.H., Kim, K.H., Lee, W.R., An, H.J., Min, B.K., Han, S.M., Kim, K.S., and Park, K.K., Apamin inhibits THP-1-derived macrophage apoptosis via mitochondria-related apoptotic pathway, Exp. Mol. Pathol., 2012, vol. 93, no. 1, pp. 129–134.

    Article  CAS  PubMed  Google Scholar 

  52. Kulawiak, B. and Szewczyk, A., Glutamate-induced cell death in HT22 mouse hippocampal cells is attenuated by paxilline, a BK channel inhibitor, Mitochondrion, 2012, vol. 12, no. 1, pp. 169–172.

    Article  CAS  PubMed  Google Scholar 

  53. Bednarczyk, P., Wieckowski, M.R., Broszkiewicz, M., Skowronek, K., Siemen, D., and Szewczyk, A., Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain, PLoS One, 2013, vol. 8, no. 6, e68125.

    Article  Google Scholar 

  54. Vianello, A., Casolo, V., Petrussa, E., Peresson, C., Patui, S., Bertolini, A., Passamonti, S., Braidot, E., and Zancani, M., The mitochondrial permeability transition pore (PTP)—an example of multiple molecular exaptation, Biochim. Biophys. Acta, 2012, vol. 1817, no. 11, pp. 2072–2086.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belyaeva.

Additional information

Original Russian Text © E.A. Belyaeva, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 4, pp. 225—235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, E.A. The effect of modulators of large-conductance Ca2+-modulated K+ channels on rat AS-30D ascites hepatoma cells and isolated liver mitochondria treated with Cd2+ . J Evol Biochem Phys 51, 259–270 (2015). https://doi.org/10.1134/S0022093015040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015040018

Key words

Navigation