Skip to main content
Log in

Electrical activity of the neocortex in adult rats after prenatal hypoxia and in epilepsy model

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Changes in electrical activity of the neocortex after prenatal hypoxia (day 14 of embryogenesis, E14, 7% O2 for 3 h) and intracortical microinjection of epileptogenic 4-aminopyridine (4-AP) were studied in adult (3-month-old) rats. The frequency–time parameters of electrocorticogram (ECoG) were analyzed during sleep and wakefulness as well as in a model of 4-AP-induced spike-wave discharge (SWD) epileptiform activity. The results showed that in rats exposed to prenatal hypoxia the theta rhythm had a lower frequency while sleep spindles displayed a lower spectral power in the low-frequency range as compared to the control group. In rats with prenatal pathology, there was revealed a delayed onset of epileptiform activity and a shifted frequency distribution of the SWD spectral power induced by 4-AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuravin, I.A., Vasilyev, D.S., Dubrovskaya, N.M., Kozlova, D.I., Kochkina, E.G., Plesneva, S.A., Tumanova, N.L., Alexeeva, O.S., Vetosh, A.N., and Nalivaeva, N.N., A study of the mechanisms of cognitive dysfunctions on the prenatal hypoxia model, Neirodegenerativnye zabolevaniya, ot genoma do tselostnogo organizma (Neurodegenerative Diseases, From Genome to Whole Organism), Urgyumov, M.V., Ed., Moscow, 2014, vol. 2, pp. 419–437.

    Google Scholar 

  2. Watson, J.B., Mednick, S.A., Huttunen, M., and Wang, X., Prenatal teratogens and the development of adult mental illness, Dev. Psychopathol., 1999, vol. 11, pp. 457–466.

    Article  CAS  PubMed  Google Scholar 

  3. Ehlert, U., Gaab, J., and Heinrichs, M., Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: The role of the hypothalamus–pituitary–adrenal axis, Biol. Psychol., 2001, vol. 57, pp. 141–152.

    CAS  PubMed  Google Scholar 

  4. Huizink, A.C., Mulder, E.J.H., and Buitelaar, J.K., Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol. Bull., 2004, vol. 130, pp. 115–142.

    Article  PubMed  Google Scholar 

  5. Semple, B.D., Blomgren, K., Gimlin, K., Ferriero, D.M., and Noble-Haeusslein, L.J., Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species, Prog. Neurobiol., 2013, vol. 106–107, pp. 1–16.

    Article  PubMed  Google Scholar 

  6. Dubrovskaya, N.M and Zhuravin, I.A., Ontogenetic behavioral features of rats exposed to hypoxia on days 14 or 18 of embryogenesis, Pavlov Zh. Vys. Nerv. Deyat., 2008, vol. 58, pp. 718–727.

    Google Scholar 

  7. Curtis, D.J., Sood, A., Phillips, T.J., Leinster, V.H.L., Nishiguchi, A., Coyle, C., Lacharme-Lora, L., Beaumont, O., Kemp, H., Goodall, R., Cornes, L., Giugliano, M., Barone, R.A., Matsusaki, M., Akashi, M., Tanaka, H.Y., Kano, M., McGarvey, J., Halemani, N.D., Simon, K., Keehan, R., Ind, W., Masters, T., Grant, S., Athwal, S., Collett, G., Tannetta, D., Sargent, I.L., Scull-Brown, E., Liu, X., Aquilina, K., Cohen, N., Lane, J.D., Thoresen, M., Hanley, J., Randall, A., and Case, C.P., Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions, Exp. Neurol., 2014, vol. 261, pp. 386–395.

    Article  CAS  PubMed  Google Scholar 

  8. Fumagalli, F., Pasini, M., Frasca, A., Drago, F., Racagni, G., and Riva, M.A., Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex, J. Neurochem., 2009, vol. 109, pp. 1733–1744.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X.H., Jia, N., Zhao, X.Y., Tang, G.K., Guan, L.X., Wang, D., Sun, H.L., Li, H., and Zhu, Z.L., Involvement of pGluR1, EAAT2 and EAAT3 in offspring depression induced by prenatal stress, Neurosci., 2013, vol. 250, pp. 333–341.

    Article  CAS  Google Scholar 

  10. Berger, M.A., Barros, V.G., Sarchi, M.I., Tarazi, F.I., and Antonelli, M.C., Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain, Neurochem. Res., 2002, vol. 27, pp. 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  11. Surges, R. and Kullmann, D.M., Channelopathies in epilepsy, Encyclopedia of Basic Epilepsy Research, San Diego. 2009, pp. 637–643.

    Chapter  Google Scholar 

  12. Fisher, R.S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., and Engel, J., Jr., Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), Epilepsia, 2005, vol. 46, pp. 470–472.

    Google Scholar 

  13. Li, J., Vestergaard, M., Obel, C., Precht, D.H., Christensen, J., Lu, M., and Olsen, J., Prenatal stress and epilepsy in later life: A nationwide follow-up study in Denmark, Epilepsy Res., 2008, vol. 81, pp. 52–57.

    Article  PubMed  Google Scholar 

  14. Weinstock, M., Alterations induced by gestational stress in brain morphology and behaviour of the offspring, Prog. Neurobiol., 2001, vol. 65, pp. 427–451.

    Article  CAS  PubMed  Google Scholar 

  15. Jobert, M., Poiseau, E., Jahnig, P., Schulz, H., and Kubicki, S., Topographical analysis of sleep spindle activity, Neuropsychobiol., 1992, vol. 26, pp. 210–217.

    Article  CAS  Google Scholar 

  16. Jankel, W.R. and Niedermeyer, E., Sleep spindles, J. Clin. Neurophysiol., Official Publication of the American Electroencephalographic Society, 1985, vol. 2, pp. 1–35.

    Article  CAS  Google Scholar 

  17. Gandolfo, G., Glin, L., and Gottesmann, C., Study of sleep spindles in the rat: a new improvement, Acta Neurobiologiae Experimentalis, 1985, vol. 45, pp. 151–162.

    CAS  PubMed  Google Scholar 

  18. Green, J.D. and Arduini, A.A., Hippocampal electrical activity in arousal, J. Neurophysiol., 1954, vol. 17, pp. 533–557.

    CAS  PubMed  Google Scholar 

  19. Buzsaki, G., Theta oscillations in the hippocampus, Neuron, 2002, vol. 33, pp. 325–340.

    Article  CAS  PubMed  Google Scholar 

  20. Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., and Buzsaki, G., Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm, Neuron, 2008, vol. 60, pp. 683–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Givens, B.S. and Olton, D.S., Cholinergic and GABAergic modulation of medial septal area: effect on working memory, Behav. Neurosci., 1990, vol. 104, pp. 849–855.

    Article  CAS  PubMed  Google Scholar 

  22. Bikbaev, A. and Manahan-Vaughan, D., Relationship of hippocampal theta and gamma oscillations to potentiation of synaptic transmission, Front. Neurosci., 2008, vol. 2, pp. 56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steriade, M., Gloor, P., Llinas, R.R., Lopes de Silva, F.H., and Mesulam, M.M., Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities, Electroencephalogr. Clin. Neurophysiol., 1990, vol. 76, pp. 481–508.

    Article  CAS  PubMed  Google Scholar 

  24. Steriade, M., McCormick, D.A., and Sejnowski, T.J., Thalamocortical oscillations in the sleeping and aroused brain, Science (New York, NY), 1993, vol. 262, pp. 679–685.

    CAS  PubMed  Google Scholar 

  25. Kalinina, D.S., Vasilyev, D.S., Dubrovskaya, N.M., Tumanova, N.L., Alekseeva, O.S., and Zhuravin, I.A., Changes in regulation of glutamatergic mediation in the rat brain hippocampus after prenatal hypoxia, Gippokamp i pamyat’ (Hippocampus and Memory), Abstr. 3rd All-Russia Conf., Pushchino, 2015, no. 36, p. 44.

    Google Scholar 

  26. Steriade, M., Nunez, A., and Amzica, F., Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram, The J. Neurosci., The Official Journal of the Society for Neuroscience, 1993, vol. 13, pp. 3266–3283.

    CAS  Google Scholar 

  27. Hess, C.P. and Barkovich, A.J., Seizures emergency neuroimaging, Neuroimaging Clinics of North America, 2010, vol. 20, pp. 619–637.

    Article  PubMed  Google Scholar 

  28. Tolmacheva, E.A., Oitzl, M.S., and van Luijtelaar, G., Stress, glucocorticoids and absences in a genetic epilepsy model, Hormones and Behavior, 2012, vol. 61, pp. 706–710.

    CAS  Google Scholar 

  29. Sadaghiani, M.M. and Saboory, E., Prenatal stress potentiates pilocarpine-induced epileptic behaviors in infant rats both time and sex dependently, Epilepsy & Behavior, 2010, vol. 18, pp. 166–170.

    Article  Google Scholar 

  30. Reddy, D.S. and Rogawski, M.A., Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility, The J. Neurosci., The Official Journal of the Society for Neuroscience, 2002, vol. 22, pp. 3795–3805.

    CAS  Google Scholar 

  31. Kovács, A., Mihály, A., and Komáromib, Á., Seizure, neurotransmitter release, and gene expression are closely related in the striatum of 4-aminopyridine-treated rats, Epilepsy Res., 2003, vol. 55 (1–2), pp. 117–129.

    Article  PubMed  Google Scholar 

  32. Nagai, T., Takata, N., Shinohara, Y., and Hirase, H., Adaptive changes of extracellular amino acid concentrations in mouse dorsal striatum by 4-AP-induced cortical seizures, Neurosci., 2015, vol. 295, pp. 229–236.

    Article  CAS  Google Scholar 

  33. Bellesi, M., Melone, M., Gubbini, A., Battistacci, S., and Conti, F., GLT-1 upregulation impairs prepulse inhibition of the startle reflex in adult rats, Glia, 2009, vol. 57, pp. 703–713.

    Article  PubMed  Google Scholar 

  34. Zhuravin, I.A., Tumanova, N.L., and Va sil’-ev, D.S., Chganges in adaptive mechanisms of the brain in ontogenesis of rats exposed to prenatal hypoxia, Dokl. Biol. Sci., 2009, vol. 425, pp. 123–125.

    Article  Google Scholar 

  35. Vasilev, D.S., Dubrovskaya, N.M., Tumanova, N.L., and Zhuravin, I.A., Prenatal hypoxia in different periods of embryogenesis differentially affects cell migration, neuronal plasticity and rat behavior in postnatal ontogenesis, Front. Neurosci., 2016, vol. 10, p. 126. doi 10.3389/fnins.2016.00126

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zhuravin.

Additional information

Original Russian Text © D.S. Kalinina, A.B. Vol’nova, O.S. Alekseeva, I.A. Zhuravin, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 5, pp. 321—327.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, D.S., Vol’nova, A.B., Alekseeva, O.S. et al. Electrical activity of the neocortex in adult rats after prenatal hypoxia and in epilepsy model. J Evol Biochem Phys 52, 352–358 (2016). https://doi.org/10.1134/S0022093016050033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016050033

Keywords

Navigation