Skip to main content
Log in

Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on Modulation of Protein Kinase B (Akt) Activity

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Clinical trials of insulin and experiments on its intranasal administration to animals suggest that this hormone can be efficient in treating human neurodegenerative and some other diseases associated with brain injury. However, the mechanism of the neuroprotective effect of intranasal insulin is far from being understood. The aim of the present work was to study the protective and antioxidative effects of insulin at various concentrations on rat brain cortical neurons under oxidative stress conditions and to estimate the contribution of protein kinase B (Akt) activity modulation to insulin-induced enhancement of neuronal viability in the rat brain cortex. The protective effect of insulin was shown to be dose-dependent within the nanomolar range (1 nM < 10 nM < 100 nM and/or 1 μM). A study of the antioxidative effect of insulin revealed the efficacy of such a low concentration as 1 nM. Immunoblot analysis showed that insulin at concentrations of 100 nM and 1 μM activates Akt both in neurons and control cells at different times after their exposure to a pro-oxidant agent. LY294002, a specific PI3K/Akt signaling pathway inhibitor, was shown to significantly reduce the protective and antioxidative effects of insulin. Insulin-induced upregulation both of Akt activity and antiapoptotic protein Bcl-2 appears to play an important role in the neuroprotective effect of insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niizuma, K., Endo, H., and Chan, P.H., Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival, J. Neurochem., 2009, vol. 109, suppl. 1, pp. 133–138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Yamada, K.H., Kozlowski, D.A., Seidl, S.E., Lance, S., Wieschhaus, A.J., Sundivakkam, P., Tiruppathi, C., Chishti, I., Herman, I.M., Kuchay, S.M., and Chishti, A.H., Targeted gene inactivation of calpain-1 suppresses cortical degeneration due to traumatic brain injury and neuronal apoptosis induced by oxidative stress, J. Biol. Chem., 2012, vol. 287, no. 16, pp. 13182–13193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yan, M.H., Wang, X., and Zhu, X., Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease, Free Radic. Biol. Med., 2013, vol. 62, pp. 90–101.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, E.R., Pastor-Barriuso, R., Dalal, D., Riemersma, R., Appel, L.J., and Guallar, E., Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality, Ann. Intern. Med., 2005, vol. 142, pp. 37–46.

    Article  PubMed  CAS  Google Scholar 

  5. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G., and Gluud, C., Mortality in randomized trials of antioxidant supplements for primary and secondary prevention, Systematic review and meta-analysis, J. Amer. Med. Ass., 2007, vol. 297, pp. 842–857.

    Article  CAS  Google Scholar 

  6. Bjelakovic, G., Nikolova, D., and Gluud, C., Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One, 2013, vol. 8, no. 9. e74558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sukhov, I.B., Shipilov, V.N., Chistyakova, O.V., Trost, A.M., and Shpakov, A.O., Long-term intranasal administration of insulin improves spatial memory in male rats with prolonged type 1 diabetes mellitus and in healthy rats, Dokl. Akad. Nauk, 2013, vol. 453, no. 5, pp. 577–580.

    Google Scholar 

  8. Shpakov, A.O., Derkach, K.V., and Berstein, L.M., Brain signaling systems in the type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases, Future Science OA (FSO), 2015, vol. 1, no. 3. FSO25.

    Google Scholar 

  9. Claxton, A., Baker, L.D., Hanson, A., Trittschuh, E.H., Cholerton, B., Morgan, A., Callaghan, M., Arbuckle, M., Behl, C., and Craft, S., Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia, J. Alzheimers Dis., 2015, vol. 44, no. 3, pp. 897–906.

    Article  PubMed  CAS  Google Scholar 

  10. Shah, A.K., Gupta, A., and Dey, C.S., AICAR induced AMPK activation potentiates neuronal insulin signaling and glucose uptake, Arch. Biochem. Biophys., 2011, vol. 509, pp. 142–146.

    Article  PubMed  CAS  Google Scholar 

  11. Dichter, M.A., Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation, Brain Res., 1978, vol. 149, pp. 279–293.

    Article  PubMed  CAS  Google Scholar 

  12. Mironova, E.V., Evstratova, A.A., and Antonov, S.M., A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture, J. Neurosci. Methods, 2007, vol. 163, no. 1, pp. 1–8.

    Article  PubMed  Google Scholar 

  13. Hansen, M.B., Nielsen, S.E., and Berg, K., Reexamination and further development of a precise and rapid dye method for measuring cell growth/cell kill, Immunol. Methods, 1989, vol. 119, no. 2, pp. 203–210.

    Article  CAS  Google Scholar 

  14. Vassault, A., Lactate dehydrogenase: UV-method with pyruvate and NADH, Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., Weinheim, 1983, vol. 3, pp. 118–126.

    CAS  Google Scholar 

  15. Eruslanov, E. and Kusmartsev, S., Identification of ROS using oxidized DCFDA and flow-cytometry, Advanced Protocols in Oxidative Stress II, Armstrong, D., Ed., New York, 2009, chapter 4, pp. 57–72. (Series “Methods in Molecular Biology”. V. 594).

    Google Scholar 

  16. Yuan, H.B., Sun, B., Gao, F., and Lan, M., Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells, Pharmaceut. Biol., 2016, vol. 54, no. 11, pp. 2629–2635.

    Article  CAS  Google Scholar 

  17. Zakharova, I.O., Sokolova, T.V., Bayunova, L.V., Vlasova, Y.A., Rychkova, M.P., and Avrova, N.F., a-Tocopherol in nanomolar concentrations protects PC12 cells from hydrogen peroxide-induced death and modulates protein kinase activities, Int. J. Mol. Sci., 2012, vol. 13, pp. 11543–11668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Duarte, A.I., Santos, M.S., Oliveira, C.R., and Rego, A.C., Insulin neuroprotection against oxidative stress in cortical neurons. Involvement of uric acid and glutathione antioxidant defences, Free Rad. Biol. Med., 2005, vol. 39, pp. 876–889.

    Article  PubMed  CAS  Google Scholar 

  19. Duarte, A.I., Santos, P., Oliveira, C.R., Santos, M.S., and Rego, A.C., Insulin neuroprotection against oxidative streßs is mediated by Akt and GSK-3β signaling pathways and changes in protein expression, Biochem. Biophys. Acta, 2008, vol. 1783, pp. 994–1002.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, X.R., Jia, C.R., Gao, G.D., Wang, S.H., Han, Y., and Cao, W., Neuroprotection of insulin against stress-induced apoptosis in cultured retinal neurons: involvement of phoshoinositide 3-kinase/Akt signal pathway, Acta Biochem. Biophys. Sin., 2006, vol. 38, no. 4, pp. 241–248.

    Article  CAS  Google Scholar 

  21. Ramalingam, M. and Kim, S.J., Insulin exerts neuroprotective effects via Akt/Bcl-2 signaling pathways in differentiated SH-SY5Y cells, J. Recept. Signal Transduct. Res., 2015, vol. 35, no. 1, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  22. Collino, M., Aragno, M., Castiglia, S., Tomasinelli, C., Thiemermann, C., Boccuzzi, G., and Fantozzi, R., Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats: a role for glycogen synthase kinase-3beta, Diabetes, 2009, vol. 58, no. 1, pp. 235–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Goldstein, B.J., Mahadev, K., Wu, X., Zhu, L., and Motoshima, H., Role of insulin-induced reactive oxygen species in the insulin signaling pathway, Antioxid. Redox Signal., 2005, vol. 7, no. 7–8, pp. 1021–1031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Meng, D., Mei, A., Liu, J., Kang, X., Shi, X., Qian, R., and Chen, S., NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro, PLoS One, 2012, vol. 7, no. 10. e48393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Onoue, T., Goto, M., Tominaga, T., Sugiyama, M., Tsunekawa, T., Hagiwara, D., Banno, R., Suga, H., Sugimura, Y., and Arima, H., Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus, Neurosci. Lett., 2016, vol. 619, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  26. Xi, G., Shen, X.C., Wai, C., and Clemmons, D.R., Recruitment of Nox4 to a plasma membrane scaffold is required for localized reactive oxygen species generation and sustained Src activation in response to insulin-like growth factor-I, J. Biol. Chem., 2013, vol. 288, no. 22, pp. 15641–15653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Helgeland, E., Breivik, L., Sishi, B.J., Engelbrecht, A.M., and Jonassen, A.K., Intermittent insulin treatment mimicks ischemic preconditioning via MitoKATR channels, ROS, and RISK, Scand. Cardiovasc. J., 2015, vol. 49, no. 5, pp. 270–279.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, B., Sullivan, K.A., Backus, C., and Feldman, E.L., Cortical neurons develop insulin resistance and blunted Akt signaling, A potential mechanism contributing to enchanced ischemic injury in diabetes, Antiox. Redox Sign., 2011, vol. 14, pp. 1829–1839.

    Article  CAS  Google Scholar 

  29. Huang, T.-J., Verkhratsky, A., and Fernyhough, P., Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons, Mol. Cell. Neurosci., 2005, vol. 28, pp. 42–54.

    Article  PubMed  CAS  Google Scholar 

  30. Pugazhenthi, S., Nesterova, A., Sable, C., Heidenreich, K.A., Boxer, L.M., Heasley, L.E., and Reusch, J.E., Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response elementbinding protein, J. Biol. Chem., 2000, vol. 275, pp. 10761–10766.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng, Y., Loh, Y.P., and Birch, N.P., Neuroserpin attenuates H2O2-Induced oxidative stress in hippocampal neurons via AKT and BCL-2 signaling pathways, J. Mol. Neurosci., 2017, vol. 61, no. 1, pp. 123–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Avrova.

Additional information

Original Russian Text © I.O. Zakharova, T.V. Sokolova, I.I. Zorina, L.V. Bayunova, M.P. Rychkova, N.F. Avrova, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 3, pp. 169–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.O., Sokolova, T.V., Zorina, I.I. et al. Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on Modulation of Protein Kinase B (Akt) Activity. J Evol Biochem Phys 54, 192–204 (2018). https://doi.org/10.1134/S0022093018030043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018030043

Key words

Navigation