Skip to main content
Log in

Biochemical Aspects of Hydroquinone Impact on Motor Activity in Newborn Rats

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effects of hydroquinone (200 mg/kg) on spontaneous periodic motor activity (SPMA) and a number of biochemical markers were studied in 116-day-old rats. According to Laborit (1965), the mechanism of hydroquinone action is based on inhibition of the pentose phosphate pathway in excitable structures. Herein, we confirmed that intraperitoneal injection of hydroquinone drastically changes the SPMA pattern, inducing uninterrupted intense motor activity. To test the metabolic, redox and anticholinergic hypotheses, various feasible targets of hydroquinone were addressed. The experimental results revealed age-related changes in a number of biochemical markers. In erythrocytes (RBC), hydroquinone induced a slight increase in lactate and pyruvate levels but did not affect the glucose level, nor did it inhibit the activity of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) in vitro. Hydroquinone did not affect significantly RBS levels of reduced and oxidised glutathione (GSH and GSSG) and different types of hemoglobin as well as plasma levels of malonic dialdehyde (MDA). High doses of hydroquinone inhibited RBC acetylcholinesterase (AChE) in vitro. However, blockade of central and peripheral muscarinic and nicotinic acetylcholine receptors, induced both before and after hydroquinone injection, did not prevent SPMA potentiation and changes in its pattern. Thus, our results cast doubt both on the metabolic hypothesis of the hydroquinone action and the physiological relevance of its anticholinesterase effect to enhancing motor activity. The tasks for further investigation in this direction are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laborit, H., Les régulations métaboliques, Paris, 1965.

    Google Scholar 

  2. Kuznetsov, S.V., The dependence of spontaneous excitation processes on metabolic activity in the early postnatal period, J. Evol. Biochem. Physiol., 1996, vol. 32, pp. 338–345.

    Google Scholar 

  3. Thor, H., Smith, M.T., Hartzell, P., Bellomo, G., Jewell, S.A., and Orrenius, S., The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells, J. Biol. Chem., 1982, vol. 257, pp. 12419–12425.

    CAS  PubMed  Google Scholar 

  4. Li, Y. and Trush, M.A., DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu (II)/Cu (I) redox cycle and reactive oxygen generation, Carcin., 1993, vol. 14, pp. 1303–1311.

    Article  CAS  Google Scholar 

  5. Taguchi, K., Fujii, S., Yamano, S., Cho, A.K., Kamisuki, S., Nakai, Y., Sugawara, F., Froines, J.R., and Kumagai, Y., An approach to evaluate twoelectron reduction of 9, 10-phenanthraquinone and redox activity of the hydroquinone associated with oxidative stress, Free Rad. Biol. Med., 2007, vol. 43, pp. 789–799.

    Article  CAS  PubMed  Google Scholar 

  6. Aggarwal, N.T. and Makielski, J.C., Redox control of cardiac excitability, Antioxid. Redox Signal., 2013, vol. 18, pp. 432–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byeon, S.E., Yu, T., Yang, Y., Lee, Y.G., Kim, J.H., Oh, J., Jeong, H.Y., Hong, S., Yoo, B.C., Cho, W.J., Hong, S., and Cho, J.Y., Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues, Free Rad. Biol. Med., 2013, vol. 57, pp. 105–118.

    Article  CAS  PubMed  Google Scholar 

  8. DeCaprio, A.P., The toxicology of hydroquinone–relevance to occupational and environmental exposure, Crit. Rev. Toxicol., 1999, vol. 29, no. 3, pp. 283–330.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, H., Zhou, G., Gao, X., Wang, Y., and Yao, W., Acetylcholinesterase inhibitory-active components of Rhodiola rosea L., Food Chem., 2007, vol. 105, no. 1, pp. 24–27.

    Article  CAS  Google Scholar 

  10. Scozzafava, A., Kalin, P., Supuran, C.T., Gülçin, I., and Alwasel, S.H., The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (ACh I, II, IX, and XII), J. Enzyme Inhib. Med. Chem., 2015, vol. 30, pp. 941–946.

    Article  CAS  PubMed  Google Scholar 

  11. Chambers, P.L. and Rowan, M.J., An analysis of the toxicity of hydroquinone on central synaptic transmission, Toxicol. Appl. Pharmacol., 1980, vol. 54, pp. 238–243.

    Article  CAS  PubMed  Google Scholar 

  12. Otsuka, M. and Nonomura, Y., The action of phenolic substances on motor nerve endings, J. Pharmacol. Exp. Ther., 1963, vol. 140, no. 1, pp. 41–45.

    CAS  PubMed  Google Scholar 

  13. Stepuro, I.I., Chaikovskaya, N.A., Vodoevich, V.P., and Vinogradov, V.V., Reduction of methemoglobin and ferricytochrome c by glycosylated amino acids and albumin, Biochem. (Moscow), 1997, vol. 62, no. 9, pp. 967–972.

    CAS  Google Scholar 

  14. Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem., 1969, vol. 27, pp. 502–522.

    Article  CAS  PubMed  Google Scholar 

  15. Rahman, I., Kode, A., and Biswas, S.K., Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat. Protoc., 2006, vol. 1, pp. 3159–3165.

    Article  CAS  PubMed  Google Scholar 

  16. Esterbauer, H. and Cheeseman, K., Determination of aldehydic lipid peroxidation products: malonaldialdehyde on related aldehydes, Free Rad. Biol. Med., 1991, vol. 11, pp. 81–128.

    Article  CAS  PubMed  Google Scholar 

  17. Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 1961, vol. 7, no. 2, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  18. Pérez, F. and Granger, B.E., IPython: a system for interactive scientific computing, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 21–29.

    Article  Google Scholar 

  19. McKinney, W., Data structures for statistical computing in python, Proc. Of the 9th Python in Sci. Conf., 2010, vol. 445, pp. 51–56.

    Google Scholar 

  20. Van Der Walt, S., Colbert, S.C., and Varoquaux, G., The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 2011, vol. 13, no. 2, pp. 22–30.

    Article  Google Scholar 

  21. Hunter, J.D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 90–95.

    Article  Google Scholar 

  22. Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Stat. Soc. Ser. B, Stat. Methodol., 1995, vol. 57, pp. 289–300.

    Google Scholar 

  23. Holm, S., A simple sequentially rejective multiple test procedure, Scand. J. Stat., 1979, vol. 6, no. 2, pp. 65–70.

    Google Scholar 

  24. Lucarelli, G., Porcellini, A., Carnevali, C., Carmena, A., and Stohlman, F., Fetal and neonatal erythropoiesis, Ann. N. Y. Acad. Sci., 1968, vol. 149, pp. 544–559.

    Article  CAS  PubMed  Google Scholar 

  25. Mogey, G.A. and Young, P.A., The antagonism of curarizing activity by phenolic substances, Brit. J. Pharmacol., 1949, vol. 4, pp. 359–365.

    CAS  PubMed  Google Scholar 

  26. Prokofieva, D.S., Voitenko, N.G., Gustyleva, L.K., Babakov, V.N., Savelieva, E.I., Jenkins, R.O., and Goncharov, N.V., Microplate spectroscopic methods for determination of the organophosphate soman, J. Environ. Monit., 2010, vol. 12, pp. 1349–1354.

    Article  CAS  PubMed  Google Scholar 

  27. Prokofieva, D.S., Jenkins, R.O., and Goncharov, N.V., Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results, Analyt. Biochem., 2012, vol. 424, no. 2, pp. 108–113.

    Article  CAS  PubMed  Google Scholar 

  28. Bakker, A.J., Lamb, G.D., and Stephenson, D.G., The effect of 2,5-di-(tert-butyl)-1,4-hydroquinone on force responses and the contractile apparatus in mechanically skinned muscle fibres of the rat and toad, J. Muscle Res. Cell Motil., 1996, vol. 17, no. 1, pp. 55–67.

    Article  CAS  PubMed  Google Scholar 

  29. Lape, M., Elam, C., Versluis, M., Kempton, R., and Paula, S., Molecular determinants of sarco/endoplasmic reticulum calcium ATPase inhibition by hydroquinone-based compounds, Prot. Struct. Funct. Bioinform., 2008, vol. 70, pp. 639–649.

    Article  CAS  Google Scholar 

  30. Paula, S., Elam, C., Woeste, M., Abell, J., and Kempton, R.J., Hydroquinones with conformationally constrained substituents: synthesis, characterization, and evaluation as calcium-ATPase inhibitors, Int. J. Biosci. Biochem. Bioinform., 2013, vol. 3, no. 5, p. 535.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Terpilovskii.

Additional information

Original Russian Text © M.A. Terpilovskii, S.V. Kuznetsov, N.V. Goncharov, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 6, pp. 377–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terpilovskii, M.A., Kuznetsov, S.V. & Goncharov, N.V. Biochemical Aspects of Hydroquinone Impact on Motor Activity in Newborn Rats. J Evol Biochem Phys 54, 425–433 (2018). https://doi.org/10.1134/S0022093018060017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018060017

Key words

Navigation