Skip to main content
Log in

Evolutionary Origins of Transventricular Transmission of Hypothalamic Hormones and Neuromodulatory Substances

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Liquor-contacting cells, immunoreactive to oxytocin, vasopressin, monoamines (dopamine, serotonin) and calbindin, were found in hypothalamic neurosecretory nuclei of turtles (Testudo horsfieldi and Emys orbicularis). They are considered as sources of the nonsynaptic transventricular pathway responsible for the delivery of a broad variety of hormones and neuromodulators to different hypothalamic and extrahypothalamic brain structures. This phylogenetically ancient tract is inherent to all vertebrates, including humans, and contributes to the organization of different forms of social behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CB:

calbindin

Ep:

ependymal layer

ir:

immunoreactive

MRI:

n. medialis re-cessus infundibuli

NPP:

n. preopticus periven-tricularis

Ox:

oxytocin

pEp:

periependymal layer

PVN:

n. paraventricularis

Se:

serotonin

sEp:

subependymal layer

sEpe:

external sEp

sEpi:

internal sEp

TH:

tyrosine-hydroxylase

trHh:

tractus hypothalamo-hypophisalis

V:

third ventricle

Vp:

vasopressin

5-HT:

5-hy-droxytryptamine.

References

  1. Polenov, A.L., Evolyutsiya gipotalamo-gipofizar-nogo neiroendokrinnogo kompleksa (Evolution of the Hypothalamo-Hypophyseal Neuroendocrine Complex), pt. 2, Leningrad, 1983, pp. 53–109.

    Google Scholar 

  2. Polenov, A.L., Obshchaya kharakteristika neiro-sekretornykh kletok. Neiroendokrinologiya (General Characteristics of Neurosecretory Cells. Neuroen-docrinology), book 1, pt. 1, St. Petersburg, 1993, pp. 13–69.

    Google Scholar 

  3. Ugryumov, M.V., Mechanisms of Neuroendocrine Regulation, Moscow, 1999.

    Google Scholar 

  4. Vigh, B., Manzano E, Silva, M.J., Frank, C.L., Vincze, C, Czirok, S.J., Szabó, A., Lukáts, A, and Szél, A., The system of cerebrospinal fluid-contacting neurons. Its supposed role in the non-synaptic signal transmission of the brain, Histol. Histopathol., 2004, vol. 19, pp. 607–628.

    CAS  PubMed  Google Scholar 

  5. Veening, J.G. and Barendregt, H.P., The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid: a review, Cerebrospinal Fluid Res., 2010, 7: 1. doi: 10.1186/1743-8454-7-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knobloch, M.S. and Grinevich, V., Evolution of oxytocin pathways in the brain of vertebrates, Front. Behav. Neurosci., 2014, 8: 31. doi: 10.3389/ fnbeh.2014.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grinevich, V., Knobloch-Bollmann, H.S., Eliava, M., Busnelli, M., and Chini, B., Assembling the puzzle: pathways of oxytocin signaling in the brain, Biol. Psychiatr., 2016, vol. 79, pp. 155–164.

    Article  CAS  Google Scholar 

  8. Johnson, Z.V. and Young, L.J., Oxytocin and vaso-pressin neural networks: implications for social behavioral diversity and translational neuroscience, Neurosci. Biobehav. Rev., 2017, vol. 76, pp. 87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belekhova, M.G., Kenigfest, N.B., Chernigovskaya, E.V., and Veselkin, N.P., Selective specificity to calcium-binding proteins calbindin and cal-retinin in the magnocellular neurosecretory hypo-thalamic nuclei of tortoises and turtles, Dokl. Biol. Nauk., 2017, vol. 473, pp. 80–83.

    Article  CAS  Google Scholar 

  10. Dwivedi, S. and Prasada Rao, P.D., Cytoarchi-tectonic pattern of the hypothalamus in the turtle, Lissemys punctata granosa, Cell Tiss. Res., 1992, vol. 270, pp. 173–188.

    Article  Google Scholar 

  11. Bons, N., Immunocytochemical identification of the mesotocin-and vasotocin-producing systems in the brain of temperature desert lizard species and their modifications by cold exposure, Gen. Comp. Endocrinol., 1983, vol. 52, pp. 56–66.

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Liebrez, P., Perez, J., Nadales, A.E., Cifuentes, M., Crondona, J.M., Mancera, J.M., and Rodriguez, E.M., Immunocytochemical study of the hypothalamic magnocellularis neurosecre-tory nuclei of the snake Natrix maura and the turtle Mauremys caspica, Cell Tiss. Res., 1988, vol. 253, pp. 435–445.

    Google Scholar 

  13. Smeets, W.J., Sevensma, J.J., and Jonker, A.J., Comparative analysis of vasotocin-like immunore-activity in the brain of the turtle Pseudemys scripta elegans and the snake Python reguium, Brain Behav. Evol., 1990, vol. 35, pp. 65–84.

    Article  CAS  PubMed  Google Scholar 

  14. Bennis, M., Tramu, A.M., and Reperant, J., Vaso-pressin and oxytocin-like systems in the chameleon brain, J. Hirnforsch., 1995, vol. 36, pp. 445–450.

    CAS  PubMed  Google Scholar 

  15. Silveira, P.F., Breno, M.C., Martin del Rio, M.P., and Mancera, M., The distribution of vasoto-cin and mesotocin immunoreactivity in the brain of snake, Bothrops jararca, J. Chem. Neuroanat., 2002, vol. 24, pp. 15–26.

    Article  CAS  PubMed  Google Scholar 

  16. Barka-Dahane, Z., Bendjelloul, M., Estabel, J., and Exbrayat, J.M., The distribution of vasotocin and mesotocin immunoreactivity in the hypotha-lamic magnocellular neurosecretory nuclei of the Saharan herbivorous lizard, Uromastix acanthinu-rus Bell, 1825 (Sauria-Agamidae), Histol. Histo-pathol., 2010, vol. 25, pp. 159–175.

    CAS  Google Scholar 

  17. Lopez-Avalos, M.D., Mancera, M.D., Perez-Figares, J.M., and Fernandez-Llebrez, P., Immu-nocytochemical localization of corticotrophin-re-leasing factor in the brain of the turtle, Mauremys caspica, Anat. Embryol. (Berlin), 1993, vol. 188, pp. 163–171.

    CAS  Google Scholar 

  18. Brocklehurst, G., The significance of the evolution of the cerebrospinal fluid system, Ann. R Coll. Surg. Eng., 1979, vol. 61, pp. 349–356

    CAS  Google Scholar 

  19. Gonzalez-Santandez, R., Electron-microscopic study of the secretion of the ependymal cells in the domestic cat (ependymin-beta cells), Acta Anat. (Basel), 1979, vol. 103, pp. 266–277.

    Article  Google Scholar 

  20. Wood, J.H., Neuroendocrinology of cerebrospinal fluid: peptides, steroids, and other hormones, Neu-rosurgery, 1982, vol. 11, pp. 293–305.

    CAS  Google Scholar 

  21. Kozlovski, G.P., Hormone pathways in cerebro-spinal fluid, Neurol. Clin., 1986, vol. 4, pp. 907–917.

    Article  Google Scholar 

  22. Ito, H., The neurosecretory apparatus in the ventricular wall of the reptilian brain, J. Hirnforsch., 1965, vol. 7, pp. 493–498.

    CAS  PubMed  Google Scholar 

  23. Robinson, A.G. and Zimmerman, E.A., Cerebro-spinal fluid and ependymal neurophysin, J. Clin. Invest., 1973, vol. 52, pp. 1260–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korf, H.W., Wiglietti-Panzica, C., and Panzica, G.C., A Golgi study on the cerebrospinal fluid (CSF)-contacting neurons in the paraventricular nucleus of the Pekin dove, Cell Tiss. Res., 1983, vol. 228, pp. 149–163.

    Article  CAS  Google Scholar 

  25. Paz Doel, R., Garcia Cordovilla, R., Fernandez Soriano, J., Fernandez, E., and Azcoitia, I., Ventricular labyrinths of the ependyma adjacent to the hypothalamic paraventricular nucleus in the turtle Mauremys caspica, J. Hirnforsch., 1986, vol. 27, pp. 431–434.

    CAS  PubMed  Google Scholar 

  26. Dubois-Dauphin, M., Tribolett, E., and Dreifuss, J.J., Distribution of neurohypofisial peptides in the guinea pig brain II. An immunocytochemical study of oxytocin, Brain Res., 1989, vol. 496, pp. 66–81.

    Article  CAS  PubMed  Google Scholar 

  27. Amat, P., Amat-Peral, G., Pastor, F.E., Blazguerez, J.L., PelaezAlvarez-Morujo, A., Toranzo, D., and Sanchez, A., Morphological substrates of the ventricular route of secretion and transport of substances in the tubero-infundibular region of the hypothalamus, Bol. Asoc. Med. PR, 1992, vol. 84, pp. 56–66.

    CAS  Google Scholar 

  28. Bruni, J.E., Ependymal development proliferation and functions: a review, Microsc. Res. Tech., 1988, vol. 41, pp. 2–13.

    Article  Google Scholar 

  29. Rajtova, V. and Kacmarik, J., Fetal ependyma in sheep goat. A scanning electron microscopy study, Anat. Histol. Embryol., 1998, vol. 27, pp. 131–134.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, M., Ding, J. Wu, L., Han, Q., Wang, H., Zuo, G., and Hu, G., The distribution of neural nitrite oxide synthesis-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxy-tocin, Brain Res., 2005, vol. 1038, pp. 150–162.

    Article  CAS  PubMed  Google Scholar 

  31. Mattew, T.C., Regional analysis of the ependyma of the third ventricle of rat by light and electron microscopy, Anat. Histol. Embryol., 2008, vol. 37, pp. 9–18.

    Google Scholar 

  32. Zhang, I.C., Zeng, Y.M., Ting, J., Cao, J.P., and Wang, M.S., The distribution and signaling directions of the cerebrospinal fluid- contacting neurons in the parenchyma of the rat brain, Brain Res., 2003, vol. 989, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Djenoune, L., Khabon, H., Joubert, F., Quan, F.B., Figueiredo, S.N., et al., Investigations of cerebrospinal fluid-contacting neurons expressing PKD2 L1: evidence for a conservative system from fish to primates, Front. Neuroanat., 2014, vol. 81, p. 26.

    Google Scholar 

  34. Skipor, J. and Thiery, J.C., The chorioid plex-us-cerebrospinal fluid system: underevaluated pathway of neuroendocrine signaling into the brain, Acta Neurobiol. Exp. (Wars), 2008, vol. 68, pp. 414–426.

    Google Scholar 

  35. Li, Z., Decavel, C., and Hatton, G.I., Calbindin-D28k in determinating intrinsically generated firing patterns in rat supraoptic neurons, J. Physiol., 1995, vol. 488, pp. 601–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bradbury, A., Bagel, J., Sampson, M., Farhat, N., Ding, W., Swain, G., Prociuk, M., et al., Cerebro-spinal fluid calbindin D concentration as a marker of cerebellar disease progression in Niemann-Pick type C 1 disease, J. Pharmacol. Exp. Ther., 2016, vol. 358, pp. 254–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ludvig, M. and Leng, G., Dendritic peptide release and peptide-dependent behaviors, Nat. Rev. Neurosci., 2006, vol. 7, pp. 126–136.

    Article  CAS  Google Scholar 

  38. Carrer, C.S., Oxytocin pathways and the evolution of human behavior, Annu. Rev. Psychol., 2014, vol. 65, pp. 17–39.

    Article  Google Scholar 

  39. Parent, A. and Poitras, D., Morphological organization of monoamine-containing neurons in the hypothalamus of the painted turtle (Chrysemys picta), J. Comp. Neurol., 1974, vol. 154, pp. 379–394.

    Article  CAS  PubMed  Google Scholar 

  40. Parent, A., Functional anatomy and evolution of monoaminergic systems, Amer. Zool., 1984, vol. 24, pp. 783–790.

    Article  Google Scholar 

  41. Polenov, A.L., Konstantinova, M.S., and Garlov, P.E., Gipotalamo-gipofizarnyi neiroendokrinnyi kompleks (Hypothalamo-Hypophyseal Neuroen-docrine Complex), Book 1, pt. 1, 1993, St. Petersburg, pp. 139–186.

    Google Scholar 

  42. Smeets, W.J., Catecholamine systems in the CNS of reptiles: structure and functional correlations, Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates, Cambridge, 1994, pp. 103–133.

    Google Scholar 

  43. Li, Y.W., Halliday, G.M., Joh, T.H., Geffen, L.B., and Blessing, W.W., Tyrosine hydroxilase-con-taining neurons in the supraoptic and paraventric-ular nucleui of the adult human, Brain Res., 1988, vol. 461, pp. 75–86.

    Article  CAS  PubMed  Google Scholar 

  44. Ueda, S., Takeuchi, Y., and Sano, Y., Immuno-histochemical demonstration of serotonin neurons in the central nervous system of the turtle (Clemmys japonica), Anat. Embryol., 1983, vol. 168, pp. 1–19.

    Article  CAS  PubMed  Google Scholar 

  45. Brauth, S.E., Catecholamine neurons in the brain-stem of the reptile Caiman crocodilus, J. Comp. Neurol., 1988, vol. 270, pp. 313–326.

    Article  CAS  PubMed  Google Scholar 

  46. Lopez, K.H., Jones, R.E., Seufert, D.W., Rand, M.S., and Dores, D.M., Catecholaminergic cells and fibers in the brain of the Anolis carolinen-sis identified by traditional as well as whole-mount immunohistochemistry, Cell Tiss. Res., 1992, vol. 279, pp. 319–337.

    Article  Google Scholar 

  47. Woolsey, S.C. and Crews, D., Species differences in the regulation of thyrosine hydroxylase in Cnemidophorus whiptaik lizards, Develop. Neuro-biol., 2004, vol. 60, pp. 360–368.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Prof. V.V. Grinevich (Heidelberg University, Germany) for his helpful consultation and providing antibodies, as well as to Dr. D.V. Amakhin (Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, Laboratory of Molecular Mechanisms of Neuron-Neuron Interactions) for his aid in photographing the preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Belekhova.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 2, pp. 130–137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belekhova, M.G., Kenigfest, N.B., Chernigovskaya, E.V. et al. Evolutionary Origins of Transventricular Transmission of Hypothalamic Hormones and Neuromodulatory Substances. J Evol Biochem Phys 55, 140–147 (2019). https://doi.org/10.1134/S0022093019020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019020078

Keywords

Navigation