Skip to main content
Log in

The Effect of Resveratrol on Binding and Esterase Activity of Human and Rat Albumin

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The directional effect on albumin of the molecules which modulate its binding and/or esterase activity could allow stoichiometric and/or catalytic detoxification of organophosphates in the bloodstream. In this study, the effect of polyphenols on binding and catalytic activity of human (HSA) and rat (RSA) serum albumins has been investigated by molecular modeling on the examples of trans-resveratrol and paraoxon. Molecular docking of the paraoxon molecule into the Sudlow II site of HSA and RSA was followed by a calculation of conformational changes and free energies of the albumin-paraoxon complex formation using molecular dynamics simulation. The same calculation was carried out in the presence of a trans-resveratrol molecule in the Sudlow I site. It has been shown that the effect of resveratrol only consists in decreasing pseudo-esterase activity of RSA towards paraoxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa, L.G., Current issues in organophosphate toxicology, Clin. Chim. Acta, 2006, vol. 366, pp. 1–13.

    Article  CAS  Google Scholar 

  2. Pope, C., Karanth, S., and Liu, J., Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action, Environ. Toxicol. Pharmacol., 2005, vol. 19, pp. 433–446.

    Article  CAS  Google Scholar 

  3. Goncharov, N.V., Prokofyeva, D.S., Voitenko, N.G., Babakov, V.N., and Glashkina, L.M., Molecular mechanisms of cholinergic regulation and disregulation, Toksikol. Vest., 2010, no. 2, pp. 5–10.

  4. Kaur, S., Singh, S., Chahal, K.S., and Prakash, A., Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity, Can. J. Physiol. Pharmacol., 2014, vol. 92, pp. 893–911.

    Article  CAS  Google Scholar 

  5. King, A.M. and Aaron, C.K., Organophosphate and carbamate poisoning, Emerg. Med. Clin. North Amer., 2015, vol. 33, pp. 133–151.

    Article  Google Scholar 

  6. Goncharov, N.V., Belinskaia, D.A., Razygraev, A.V., and Ukolov, A.I., On enzymatic activity of albumin, Bioorg. Khim., 2015, vol. 41, no. 2, pp. 131–144.

    CAS  PubMed  Google Scholar 

  7. Goncharov, N.V., Belinskaia, D.A., Shmurak, V.I., Terpilowski, M.A., Jenkins, R.O., and Avdonin, P.V., Serum albumin binding and esterase activity: mechanistic interactions with organophosphates, Molecules, 2017, vol. 22, no. 7. Pii. E1201.

    Article  Google Scholar 

  8. Sogorb, M.A., García-Argüelles, S., Carrera, V., and Vilanova, E., Serum albumin is as efficient as paraxonase in the detoxication of paraoxon at toxicologically relevant concentrations, Chem. Res. Toxicol., 2008, vol. 21, pp. 1524–1529.

    Article  CAS  Google Scholar 

  9. Li, B., Nachon, F., Froment, M.T., Verdier, L., Debouzy, J.C., Brasme, B., Gillon, E., Schopfer, L.M., Lockridge, O., and Masson, P., Binding and hydrolysis of soman by human serum albumin, Chem. Res. Toxicol., 2008, vol. 21, no. 2, pp. 421–431.

    Article  CAS  Google Scholar 

  10. Belinskaia, D.A., Taborskaya, K.I., Avdonin, P.V., and Goncharov, N.V., Fatty acid modulation of albumin-paraoxon interaction sites: an molecular modeling analysis, Bioorg. Khim., 2017, vol. 43, no. 4, pp. 347–356.

    Google Scholar 

  11. Goncharov, N.V., Terpilowski, M.A., Shmurak, V.I., Belinskaia, D.A., and Avdonin, P.V., Comparative analysis of esterase and paraoxon activity of different serum albumin species, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 4, pp. 271–281.

    Article  CAS  Google Scholar 

  12. Yadav, P., Jadhav, S.E., Kumar, V., Kaul, K.K., Pant, S.C., and Flora, S.J., Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats, Interdiscipl. Toxicol., 2012, vol. 5, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  13. Mukherjee, S., Mukherjee, N., Saini, P., Roy, P., and Babu, S.P., Ginger extract ameliorates phosphamidon induced hepatotoxicity, Indian J. Exp. Biol., 2015, vol. 53, no. 9, pp. 574–584.

    PubMed  Google Scholar 

  14. Qi, L., Cao, C., Hu, L., Chen, S., Zhao, X., and Sun, C., Metabonomic analysis of the protective effect of quercetin on the toxicity induced by mixture of organophosphate pesticides in rat urine, Hum. Exp. Toxicol., 2017, vol. 36, no. 5, pp. 494–507.

    Article  CAS  Google Scholar 

  15. Belinskaia, D.A., Shmurak, V.I., Taborskaya, K.I., Avdonin, P.P., Avdonin, P.V., and Goncharov, N.V., In silico analysis of paraoxon binding by human and bovine serum albumin, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 3, pp. 191–199.

    Article  Google Scholar 

  16. Goncharov, N.V., Terpilowski, M.A., Shmurak, V.I., Belinskaia, D.A., and Avdonin, P.V., The rat (Rarrus norvegicus) as a model object for acute organophosphate poisoning. 1. Biochemical aspects, J. Evol. Biochem. Physiol., 2018, vol. 55, no. 2, pp. 112–123.

    Article  Google Scholar 

  17. Burns, J., Yokota, T., Ashihara, H., Lean, M.E., and Crozier, A., Plant foods and herbal sources of resveratrol, J. Agric. Food Chem., 2002, vol. 50, no. 11, pp. 3337–3340.

    Article  CAS  Google Scholar 

  18. Zamora-Ros, R., Andres-Lacueva, C., Lamuela-Raventós, R.M., Berenguer, T., Jakszyn, P., Martínez, C., Sánchez, M.J., Navarro, C., Chirlaque, M.D., Tormo, M.J., Quirós, J.R., Amiano, P., Dorronsoro, M., Larrañaga, N., Barricarte, A., Ardanaz, E., and González, C.A., Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European prospective investigation into cancer and nutrition (EPIC)-Spain cohort, Brit. J. Nutr., 2008, vol. 100, no. 1, pp. 188–196.

    Article  CAS  Google Scholar 

  19. Lyons, M.M., Yu, C., Toma, R.B., Cho, S.Y., Reiboldt, W., Lee, J., and van Breemen, R.B., Resveratrol in raw and baked blueberries and bilberries, J. Agric. Food Chem., 2003, vol. 51, no. 20, pp. 5867–5870.

    Article  CAS  Google Scholar 

  20. Latruffe, N., Menzel, M., Delmas, D., Buchet, R., and Lançon, A., Compared binding properties between resveratrol and other polyphenols to plasmatic albumin: consequences for the health protecting effect of dietary plant microcomponents, Molecules, 2014, vol. 19, no. 11, pp. 17066–17077.

    Article  Google Scholar 

  21. Voitenko, N.G., Hemostasis and esterase activity of rat blood in organophosphate intoxication, Candidate Sci. Diss., St. Petersburg, 2010.

  22. Sobolev, V.E., Jenkins, R.O., and Goncharov, N.V., Sulfated glycosaminoglycans in bladder tissue and urine of rats after acute exposure to paraoxon and cyclophosphamide, Exp. Toxicol. Pathol., 2017, vol. 69, no. 6, pp. 339–347.

    Article  CAS  Google Scholar 

  23. Han, X., Snow, T.A., Kemper, R.A., and Jepson, G.W., Binding of perfluorooctanoic acid to rat and human plasma proteins, Chem. Res. Toxicol., 2003, vol. 16, pp. 775–781.

    Article  CAS  Google Scholar 

  24. Aubry, A.F., Markoglou, N., and McGann, A., Comparison of drug binding interactions on human, rat and rabbit serum albumin using high-performance displacement chromatography, Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol., 1995, vol. 112, pp. 257–266.

    Article  CAS  Google Scholar 

  25. Frandsen, P.C. and Brodersen, R., Bilirubin/rat serum albumin interaction, Acta Chem. Scand. B, 1986, vol. 40, pp. 55–59.

    Article  CAS  Google Scholar 

  26. Lu, Z., Zhang, Y., Liu, H., Yuan, J., Zheng, Z., and Zou, G., Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin, J. Fluoresc., 2007, vol. 17, no. 5, pp. 580–587.

    Article  CAS  Google Scholar 

  27. Lockridge, O., Xue, W., Gaydess, A., Grigoryan, H., Ding, S.J., Schopfer, L.M., Hinrichs, S.H., and Masson, P., Pseudo-esterase activity of human albumin: slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines, J. Biol. Chem., 2008, vol. 283, no. 33, pp. 22582–22590.

    Article  CAS  Google Scholar 

  28. Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A.A., and Otagiri, M., Structural basis of the drug-binding specificity of human serum albumin, J. Mol. Biol., 2005, vol. 353, pp. 38–52.

    Article  CAS  Google Scholar 

  29. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., The protein data bank, Nucleic Acids Res., 2000, vol. 28, pp. 235–242.

    Article  CAS  Google Scholar 

  30. Taborskaya, K.I., Belinskaia, D.A., Avdonin, P.V., and Goncharov, N.V., Building a three-dimensional model of rat albumin molecule by homology modeling, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 5, pp. 384–393.

    Article  CAS  Google Scholar 

  31. Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients, Comput. J., 1964, vol. 7, pp. 148–154.

    Article  Google Scholar 

  32. Froimowitz, M., HyperChem: a software package for computational chemistry and molecular modeling, Biotechniques, 1993, vol. 14, pp. 1010–1013.

    CAS  PubMed  Google Scholar 

  33. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 1998, vol. 19, pp. 1639–1662.

    Article  CAS  Google Scholar 

  34. Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., GROMACS: A message-passing parallel molecular dynamics implementation, Comp. Phys. Comm., 1995, vol. 91, pp. 43–56.

    Article  CAS  Google Scholar 

  35. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., Interaction models for water in relation to protein hydration, Intermolecular Forces, Pullman, B., Ed., Dordrecht, 1981, pp. 331–342.

  36. Bussi, G., Donadio, D., and Parrinello, M., Canonical sampling through velocity rescaling, J. Chem. Phys., 2007, vol. 126, p. 014101.

    Article  Google Scholar 

  37. Berendsen, H.J.C., Postma, J.P.M., di Nola, A., van Gunsteren, W.F., and Haak, J.R., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.

    Article  CAS  Google Scholar 

  38. Darden, T., York, D., and Pedersen, L., Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, J. Chem. Phys., 1993, vol. 3, pp. 10089–10092.

    Article  Google Scholar 

  39. Hess, B., Bekker, H., Berendsen, H.J.C., and Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations, J. Comp. Chem., 1997, vol. 8, pp. 1463–1473.

    Article  Google Scholar 

  40. Jensen, J.H., Molecular Modeling Basics, CRC Press, 2010.

  41. Genheden, S. and Ryde, U., The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discov., 2015, vol. 10, pp. 449–461.

    Article  CAS  Google Scholar 

  42. Kumari, R., Kumar, R., Open source drug discovery consortium, and Lynn, A., g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model., 2014, vol. 54, pp. 1951–1962.

    Article  CAS  Google Scholar 

  43. Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., and Liu, C., Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase, J. Mol. Graph. Model., 2009, vol. 28, pp. 162–169.

    Article  Google Scholar 

  44. Semba, R.D., Ferrucci, L., Bartali, B., Urpí-Sarda, M., Zamora-Ros, R., Sun, K., Cherubini, A., Bandinelli, S., and Andres-Lacueva, C., Resveratrol levels and all-cause mortality in older community-dwelling adults, JAMA Intern. Med., 2014, vol. 174, no. 7, pp. 1077–1084.

    Article  CAS  Google Scholar 

  45. Dolinsky, V.W., Chakrabarti, S., Pereira, T.J., Oka, T., Levasseur, J., Beker, D., Zordoky, B.N., Morton, J.S., Nagendran, J., Lopaschuk, G.D., Davidge, S.T., and Dyck, J.R., Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice, Biochim. Biophys. Acta, 2013, vol. 1832, no. 10, pp. 1723–1733.

    Article  CAS  Google Scholar 

  46. Yan, F., Sun, X., and Xu, C., Protective effects of resveratrol improve cardiovascular function in rats with diabetes, Exp. Ther. Med., 2018, vol. 15, no. 2, pp. 1728–1734.

    CAS  PubMed  Google Scholar 

  47. Nozaki, A., Hori, M., Kimura, T., Ito, H., and Hatano, T., Interaction of polyphenols with proteins: binding of (-)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism, Chem. Pharm. Bull. (Tokyo), 2009, vol. 57, no. 2, pp. 224–228.

    Article  CAS  Google Scholar 

Download references

Funding

This study was implemented within the frames of the state assignment to Sechenov Institute of Evolutionary Physiology and Biochemistry (AAAA-A18-118012290142-9) and partially supported by the Russian Foundation for Basic Research (project no. 18-015-00304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Belinskaia.

Additional information

Compliance with Ethical Standards

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed.

This study did not involve human subjects as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belinskaia, D.A., Batalova, A.A. & Goncharov, N.V. The Effect of Resveratrol on Binding and Esterase Activity of Human and Rat Albumin. J Evol Biochem Phys 55, 174–183 (2019). https://doi.org/10.1134/S0022093019030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019030025

Key words

Navigation