Skip to main content
Log in

Microglia of the Brain: Origin, Structure, Functions

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review summarizes data on microglyocytes in the brain of mammals. General characteristics and features of their structure, functions and molecular organization at different ontogenetic stages are addressed. A special focus is on various hypotheses of the origin of microglia and current ideas about the involvement of microglyocytes in the regulation of neurogenesis and neuroinflammation. The data of recent experimental studies on toxic effects on microglia are critically analyzed. We point out the prospects for using the methods of selective microglia depletion (replacement) in modeling neuropathologies. This approach is supposed to enable assessment of the microglial contribution to the development of adaptive and neurodegenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kreutzberg, R.W., Microglia: a sensor for pathological events in the CNS, Trends Neurosci., 1996, vol. 19 (8), pp. 312–318.

    Article  CAS  PubMed  Google Scholar 

  2. Lawson, L.J., Perry, H., Dri, P., and Gordon, S., Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain, Neurosci., 1990, vol. 39 (1), pp. 151–170.

    Article  CAS  Google Scholar 

  3. Korzhevskii, D.E., Kirik, O.V., Suhorukova, E.G., and Vlasov, T.D., Structural organization of striatal microgliocytes following focal ischemia, Morfol., 2012, vol. 141, no. 2, pp. 28–32.

    CAS  Google Scholar 

  4. Kirik, O.V., Suhorukova, E.G., and Korzhevskii, D.E., Calcium-binding IBA-1/AIF-1 protein in rat brain cells, Morfol., 2010, vol. 137, no. 2, pp. 5–8.

    CAS  Google Scholar 

  5. Ling, E.A., Penney, D., and Leblond, C.P., Use of carbon labeling to demonstrate the role of blood monocytes as precursors of the ‘ameboid cells’ present in the corpus callosum of postnatal rats, J. Comp. Neurol., 1980, vol. 193, pp. 631–657.

    Article  CAS  PubMed  Google Scholar 

  6. Bachstetter, A.D., Morganti, J.M., Jernberg, J., Schlunk, A., Mitchell, S.H., Brewster, K.W., et al., Fractalkine and CX(3)CR1 regulate hippocampal neurogenesis in adult and aged rats, Neurobiol. Aging, 2011, vol. 32 (11), pp. 2030–2044.

    Article  CAS  PubMed  Google Scholar 

  7. Alekseeva, O.S., Gilerovich, E.G., Kirik, O.V., and Korzhevskii, D.E., Structural and spatial organization of microgliocytes in the molecular layer of rabbit cerebellar cortex, Morfol., 2016, vol. 150, no. 4, pp. 40–43.

    Google Scholar 

  8. Elmore, M.R., Lee, R.J., West, B.L., and Green, K.N., Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation, PLoS One, 2015, vol. 10 (4), e0122912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Casano, A.M., Albert, M., and Peri, F., Developmental apoptosis mediates entry and positioning of microglia in the zebrafish brain, Cell Rep., 2016, vol. 16 (4), pp. 897–906.

    Article  CAS  PubMed  Google Scholar 

  10. Del Rio-Hortega, P., El “tercer elemento” de los centros nerviosos, poder fagocitario y movilidad de la microglia. I. La microglia en estado normal, Bol. de la Soc. Española de Biol. S.C., 1919, pp. 69–120.

  11. Del Rio-Hortega, P., The microglia, Lancet, 1939, 233 (6036), pp. 1023–1026.

    Article  Google Scholar 

  12. Penfield, W., Oligodendroglia and its relation to classical neuroglia, Brain, 1924, vol. 47, pp. 430–452.

    Article  Google Scholar 

  13. Ho1zer, W., Ubereineneue Methode der Gliafaserfarbung, Ztschr. f. d. ges. Neurologie, B, LXIX, 1921.

  14. Held, H., Beiträge zur Struktur der Nervenzellen und ihrer Fortsätze, Zweite Abhandlung, Arch. Anat. Physiol. Anat. Abt., 1897, pp. 204–294.

  15. Held, H., Beiträge zur Struktur der Nervenzellen und ihrer Fortsätze, Dritte Abhandlung, Arch. Anat. Physiol. Anat. Abt., 1897, pp. 273–312.

  16. Del Rio-Hortega, P., Microglia. Cytology and Cellular Pathology of the Nervous System, New York, 1932, pp. 483–534.

  17. Aleksandrovskaya, M.M., A staining method for microglial cell (Hortega cell) and tissue-fixed macrophages. Modification of the Miyyagava method, Arkh. Patol. Anat. Patol. Fiziol., 1936, vol. 2, no. 4, p. 100.

    Google Scholar 

  18. Imai, Y., Ibata, I., Ito, D., Ohsawa, K., and Kohsaka, S., A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage, Biochem. Biophys. Res. Commun., 1996, vol. 224 (3), pp. 855–862.

    Article  CAS  PubMed  Google Scholar 

  19. Korzhevskii, D.E., Kirik, O., and Sukhorukova, E., Immunocytochemistry of microglial cells, Neuromethods, 2015, vol. 101, pp. 209–224.

    Article  CAS  Google Scholar 

  20. Penfield, W., Neuroglia and microglia. The interstitial tissue of the central nervous system, Special Cytology, 2nd ed., vol. III, Cowdry, E.V., Ed., 1932, New York, pp. 1445–1482.

  21. Kershman, J., Genesis of microglia in the human brain, Arch. Neurol. Psychiatr., 1939, vol. 41, pp. 24–50.

    Article  Google Scholar 

  22. Guillemin, G.J., and Brew, B.J., Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification, J. Leukoc. Biol., 2004, vol. 75(3), pp. 388–397.

    Article  CAS  PubMed  Google Scholar 

  23. Ginhoux, F., Lim, S., Hoeffel, G., Low, D., and Huber, T., Origin and differentiation of microglia, Front. Cell. Neurosci., 2013, vol. 7, p. 45. https://doi.org/10.3389/fncel.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blakemore, W.F., The ultrastructure of the subependymal plate in the rat, J. Anat., 1969, vol. 104, pp. 423–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis, P.D., The fate of the subependymal cell in the adult rat brain, with a note on the origin of microglia, Brain, 1968, vol. 91(4), pp. 721–736.

    Article  CAS  PubMed  Google Scholar 

  26. Ling, E.A., Some aspects of amoeboid microglia in the corpus callosum and neighbouring regions of neonatal rats, J. Anat., 1976, vol. 121(1), pp 29–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Paterson, J.A., Privat, A., Ling, E.A., and Leblond, C.P., Investigation of glial cells in semithin sections. 3. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats, J. Comp. Neurol., 1973, vol. 149 (1), pp. 83–102.

    Article  CAS  PubMed  Google Scholar 

  28. Fujita, S. and Kitamura, T., Origin of brain macrophages and the nature of the so-called microglia, Acta Neuropathol. Suppl., 1975, vol. 6, pp. 291–296.

    PubMed  Google Scholar 

  29. Kitamura, T., Miyake, T., and Fujita, S., Genesis of resting microglia in the gray matter of mouse hippocampus, J. Comp. Neurol., 1984, vol. 226, pp. 421–433.

    Article  CAS  PubMed  Google Scholar 

  30. Fedoroff, S., Zhai, R., and Novak, J.P., Microglia and astroglia have a common progenitor cell, J. Neurosci. Res., 1997, vol. 50, pp. 477–486.

    Article  CAS  PubMed  Google Scholar 

  31. Dickson, D.W. and Mattiace, L.A., Astrocytes and microglia in human brain share an epitope recognized by a B-lymphocyte-specific monoclonal antibody (LN-1), Am. J. Pathol., 1989, vol. 135, pp. 135–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Santha, K. and Juba, A., Weitre Untersuchungen uber Entwicklung der Hortegaschen Mikroglia, Arch. Psychiat. Nervenkr., 1933, vol. 98, pp. 598–613.

    Article  Google Scholar 

  33. Imamoto, K. and Leblond, C.P., Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells, J. Comp. Neurol., 1978, vol. 180 (1), pp. 139–163.

    Article  CAS  PubMed  Google Scholar 

  34. Yao, Y., Echeverry, S., Shi, X.Q., Yang, M., Yang, Q.Z., Wang, G.Y., et al., Dynamics of spinal microglia repopulation following an acute depletion, Sci. Rep., 2016, vol. 6, 22839. https://www.nature.com/articles/srep22839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shapiro, L.A., Perez, Z.D., Foresti, M.L., Arisi, G.M., and Ribak, C.E., Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus, Brain Res., 2009, vol. 1266, pp. 29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korzhevskii, D.E., Kirik, O.V., Alekseeva, O.S., Suhorukova, E.G., and Syrtsova, M.A., Intranuclear accumulation of Iba-1 protein in microglyocytes of the human brain, Morfol., 2016, vol. 149, no. 2, pp. 73–76.

    Google Scholar 

  37. Nimmerjahn, A., Kirchhoff, F., and Helmchen, F., Resting microglia cells are highly dynamic surveillants of brain parenchyma in vivo, Science, 2005, vol. 308 (5726), pp. 1314–1318.

    Article  CAS  PubMed  Google Scholar 

  38. Kaur, C. and You, Y., Ultrastructure and function of the amoeboid microglial cells in the periventricular white matter in postnatal rat brain following a hypoxic exposure, Neurosci. Lett., 2000, vol. 290, pp. 17–20.

    Article  CAS  PubMed  Google Scholar 

  39. Kierdorf, K. and Prinz, M., Factors regulating microglia activation, Front. Cell. Neurosci., 2013, vol. 7, p. 44.

    Google Scholar 

  40. Kettenmann, H., Hanisch, U.K., Noda, M., and Verkhratsky, A., Physiology of microglia, Physiol. Rev., 2011, vol. 91 (2), pp. 461–553.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, X.J., Zhang, Y.H., and Chen, S.D., CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease, J. Neuroimmune Pharmacol., 2007, vol. 2 (3), pp. 259–264.

    Article  PubMed  Google Scholar 

  42. Hoek, R.M., Ruuls, S.R., Murphy, C.A., Wright, G.J., Goddard, R., Zurawski, S.M., Blom, B., Homola, M.E., Streit, W.J., Brown, M.H., Barclay, A.N., and Sedgwick, J.D., Down-regulation of the macrophage lineage through interaction with OX2 (CD200), Science, 2000, vol. 290 (5497), pp. 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  43. Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., Lee, J.C., Cook, D.N., Jung, S., Lira, S.A., Littman, D.R., and Ransohoff, R.M., Control of microglial neurotoxicity by the fractalkine receptor, Nat. Neurosci., 2006, vol. 9 (7), pp. 917–924.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, S., Varvel, N.H., Konerth, M.E., Xu, G., Cardona, A.E., Ransohoff, R.M., et al., CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models, Am. J. Pathol., 2010, vol. 177, pp. 2549–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rogers, J.T., Morganti, J.M., Bachstetter, A.D., Hudson, C.E., Peters, M.M., Grimmig, B.A., Weeber, E.J., Bickford, P.C., and Gemma, C., CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, J. Neurosci., 2011, vol. 31 (45), pp. 16241–16250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bekhalo, V.A., Sysolyatina, E.V., and Zuev, V.A., Molecular mechanisms of congenital immunity in aging and pathogenesis of chronic infectious process, Vestn. Ross. Akad. Est. Nauk, 2010, vol. 1, pp. 74–80.

    Google Scholar 

  47. Tang, Y. and Le, W., Differential roles of M1 and M2 microglia in neurodegenerative diseases, Mol. Neurobiol., 2016, vol. 53, pp. 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  48. Fan, X., Zhang, H., Cheng, Y., Jiang, X., Zhu, J., and Jin, T., Double roles of macrophages in human neuroimmune diseases and their animal models, Mediat. Inflamm., 2016, 8489251. https://doi.org/10.1155/2016/8489251

    CAS  Google Scholar 

  49. Bogie, J.F., Stinissen, P., and Hendriks, J.J., Macrophage subsets and microglia in multiple sclerosis, Acta Neuropathol., 2014, vol. 128, pp. 191–213.

    Article  CAS  PubMed  Google Scholar 

  50. Pocock, J.M. and Kettenmann, H., Neurotransmitters receptors on microglia, Trends Neurosci., 2007, vol. 30 (10), pp. 527–535.

    Article  CAS  PubMed  Google Scholar 

  51. Kettenmann, H., Kirchhoff, F., and Verkhratsky, A., Microglia: new roles for the synaptic stripper, Neuron, 2013, vol. 77 (1), pp. 10–18.

    Article  CAS  PubMed  Google Scholar 

  52. Tremblay, M.E., The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies, Neuron. Glia Biol., 2011, vol. 7 (1), pp. 67–76.

    Article  PubMed  Google Scholar 

  53. Ling, E.A., Kaur, C., and Lu, J., Origin, nature and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells, Microsc. Res. Tech., 1998, vol. 41 (1), pp. 43–56.

    Article  CAS  PubMed  Google Scholar 

  54. Coates, P.W., Supraependymal cells: light and transmission electron microscopy extends scanning electron microscopic demonstration, Brain Res., 1973, vol. 57 (2), pp. 502–507.

    Article  CAS  Google Scholar 

  55. Bleier, R. and Albrecht, R., Supraependymal macrophages of third ventricle of hamster: morphological, functional and histochemical characterization in situ and in culture, J. Comp. Neurol., 1980, vol. 192 (3), pp. 489–504.

    Article  CAS  PubMed  Google Scholar 

  56. Kirik, O.V., Alekseeva, O.S., Moskvin, A.N., and Korzhevskii, D.E., Effects of hyperbaric oxygenation on subependymal microglia of the rat brain, J. Evol. Biochem. Physiol., 2014, vol. 50, no. 4, pp. 353–356.

    Article  Google Scholar 

  57. Mercier, F., Kitasako, J.T., and Hatton, G.I., Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network, J. Comp. Neurol., 2002, vol. 451 (4), pp. 170–188.

    Article  PubMed  Google Scholar 

  58. Carbonell, W.S., Murase, S.I., Horwitz, A.F., and Mandell, J.W., Infiltrative microgliosis: activation and long-distance migration of subependymal microglia following periventricular insults, J. Neuroinflamm., 2005, vol. 2 (1), pp 5–14.

    Article  Google Scholar 

  59. Rezaie, P. and Male, D., Mesoglia & microglia—a historical review of the concept of mononuclear phagocytes within the central nervous system, J. Hist. Neurosci., 2002, vol. 11 (4), pp. 325–374.

    Article  PubMed  Google Scholar 

  60. Gonzalez-Perez, O., Gutierrez-Fernandez, F., Lopez-Virgen, Collas-Aguilar, J., Quinones-Hinojosa, A., and Garcia-Verdugo, J.M., Immunological regulation of neurogenic niches in the adult brain, Neurosci., 2012, vol. 226, pp. 270–281.

    Article  CAS  Google Scholar 

  61. Morrens, J., Van Den Broeck, W., and Kempermann, G., Glial cells in adult neurogenesis, Glia, 2012, vol. 60 (2), pp. 159–174.

    Article  PubMed  Google Scholar 

  62. Lim, D.A. and Alvarez-Buylla, A., The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis, Cold Spring Harb. Perspect. Biol., 2016, vol. 8 (5), pp. 1–34.

    Article  CAS  Google Scholar 

  63. Su, P., Zhang, J., Zhao, F., Aschner, M., Chen, J., and Luo, W., The interaction between microglia and neural stem/precursor cells, Brain Research Bull., 2014, vol. 109, pp. 32–38.

    Article  CAS  Google Scholar 

  64. Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J.E., Sekino, Y., and Sato, K., Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone, J. Neurosci., 2014, vol. 34 (6), pp. 2231–2243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A.E., Pluchino, S., Martino, G., and Schwartz, M., Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells, Mol. Cell. Neurosci., 2006, vol. 31 (1), pp. 149–160.

    Article  CAS  PubMed  Google Scholar 

  66. Ehninger, D. and Kempermann, G., Neurogenesis in the adult hippocampus, Cell Tiss. Res., 2008, vol. 331, pp. 243–250.

    Article  Google Scholar 

  67. Sierra, A., Encinas, J.M., Deudero, J.J., Chancey, J.H., Enikolopov, G., Overstreet-Wadiche, L.S., et al., Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis, Cell Stem Cell, 2010, vol. 7 (4), pp. 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vukovic, J., Colditz, M.J., Blackmore, D.G., Ruitenberg, M.J., and Bartlett, P.F., Microglia modulate hippocampal neural precursor activity in response to exercise and aging, J. Neurosci., 2012, vol. 32, pp. 6435–6443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., and Greenberg, N., Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood, Nat. Neurosci., 2006, vol. 9 (2), pp. 268–275.

    Article  CAS  PubMed  Google Scholar 

  70. Choi, S.H., Veeraraghavalu, K., Lazarov, O., Marler, S., Ransohoff, R.M., and Ramirez, J.M., Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation, Neuron, 2008, vol. 59 (4), pp. 568–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Erblich, B., Zhu, L., Etgen, A.M., Dobrenis, K., and Pollard, J.W., Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits, PLoS ONE, 2011, vol. 7 (1), e0026317. https://doi.org/10.1371/journal.pone.0026317

    Google Scholar 

  72. Elmore, M.R., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E., Rice, R.A., et al., Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain, Neuron, 2014, vol. 82, pp. 380–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patel, S. and Player, M.R., Colony-stimulating factor-1 receptor inhibitors for the treatment of cancer and inflammatory disease, Curr. Top. Med. Chem., 2009, vol. 9 (7), pp. 599–610.

    Article  CAS  PubMed  Google Scholar 

  74. Lin, H., Lee, E., Hestir, K., Leo, C., Huang, M., Bosch, E., Halenbeck, R., Wu, G., Zhou, A., Behrens, D., Hollenbaugh, D., Linnemann, T., Qin, M., Wong, J., Chu, K., Doberstein, S.K., and Williams, L.T., Discovery of a cytokine and its receptor by functional screening of the extracellular proteome, Science, 2008, vol. 320 (5877), pp. 807–811.

    Article  CAS  PubMed  Google Scholar 

  75. Li, J., Chen, K., Zhu, L., and Pollard, J.W., Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice, Genesis, 2006, vol. 44, pp. 328–335.

    Article  CAS  PubMed  Google Scholar 

  76. Waisman, A., Ginhoux, F., Greter, M., and Bruttger, J., Homeostasis of microglia in the adult brain: review of novel microglia depletion systems, Trends Immunol., 2015, vol. 36, pp. 625–636.

    Article  CAS  PubMed  Google Scholar 

  77. Rice, R.A., Pham, J., Lee, R.J., Najafi, A.R., and West, B.L., and Green, K.N., Microglial repopulation resolves inflammation and promotes brain recovery after injury, Glia, 2017, vol. 65 (6), pp. 931–944.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li, M., Li, Z., Ren, H., Jin, W.N., Wood, K., Liu, Q., Sheth, K.N., and Shi, F.D., Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage, J. Cereb. Blood Flow Metab., 2016, vol. 37 (7), pp 2383–2395.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Szalay, G., Martinecz, B., Lenart, N., Kornyei, Z., Orsolits, B., Judak, L., et al., Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke, Nat. Commun., 2016, vol. 7, p. 11499. https://www.nature.com/articles/ncomms11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin, W.N., Shi, S.X., Li, Z., Li, M., Wood, K., Gonzales, R.J., and Liu, Q., Depletion of microglia exacerbates postischemic inflammation and brain injury, J. Cereb. Blood Flow Metab., 2017, vol. 37 (6), pp. 2224–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Acharya, M.M., Green, K.N., Allen, B.D., Najafi, A.R., Syage, A., Minasyan, H., et al., Elimination of microglia improves cognitive function following cranial irradiation, Sci. Rep., 2016, vol. 6, p. 31545. https://www.nature.com/articles/srep31545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chalmers, S.A., Wen, J., Shum, J., Doerner, J., Herlitz, L., and Putterman, C., CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus, Clin. Immunol., 2017, vol. 185, pp. 100–108.

    Article  CAS  PubMed  Google Scholar 

  83. Eyo, U.B. and Wu, L.J., Bidirectional microglianeuron communication in the healthy brain, Neural. Plast., 2013, p. 456857.

  84. Gowing, G., Vallieres, L., and Julien, J.P., Mouse model for ablation of proliferating microglia in acute CNS injuries, Glia, 2006, vol. 53, pp. 331–337.

    Article  PubMed  Google Scholar 

  85. Varvel, N.H., Grathwohl, S.A., Baumann, F., Liebig, C., Bosch, A., Brawek, B., et al., Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 18 150–18 155.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out under the state assignment of the Russian Federation Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Alekseeva.

Ethics declarations

This study did not involve human subjects as research objects.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, vol. 55, no. 4, pp. 231–241.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, O.S., Kirik, O.V., Gilerovich, E.G. et al. Microglia of the Brain: Origin, Structure, Functions. J Evol Biochem Phys 55, 257–268 (2019). https://doi.org/10.1134/S002209301904001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209301904001X

Key words

Navigation