Skip to main content
Log in

Blockade of Brain Adrenoreceptors Delays Seizure Development during Hyperbaric Oxygen Breathing

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The main prodromal sign of seizures developing when breathing hyperbaric oxygen is a high activity of sympathetic outflow, as manifested in altered external respiration, impaired cardiac and vascular activity. We tested the hypothesis that the brain adrenergic receptors, as part of the central adrenergic system, are involved in the development of sympathetic hyperactivity and generalized seizures during hyperbaric oxygen breathing. In experiments on rats, α- and β-adrenoreceptors were blocked by non-selective and selective antagonists (propranolol, atenolol, phentolamine and prazosin) injected into the cerebral ventricles. Reactions of the CNS and autonomic nervous system to oxygen breathing at 5 ATA were evaluated. We found that in animals with intact adrenoreceptors, hyperbaric oxygen caused convulsions preceded by biphasic reactions of the cardiovascular system, external respiration and cerebral blood flow. All antagonists used in experiments attenuated visceral reactions and the development of oxygen convulsions, although propranolol showed most pronounced antihypertensive and anticonvulsant properties. The data obtained indicate the involvement of brain adrenergic receptors in the ANS reactions to hyperoxia and in the mechanisms underlying the development of oxygen seizures during hyperbaric oxygen breathing. Our results can be used to develop new methods for the prevention of seizures under extreme hyperoxia and to ensure the safe use of hyperbaric oxygen in clinical practice and diving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

references

  1. Bean, J.W. and Johnson, P.C., Epinephrine and neurogenic factors in the pulmonary edema and CNS reactions induced by O2 at high pressure, Am. J. Physiol., 1955, vol. 180, pp. 438–444.

  2. Zaltsman, G.L., Stages of oxygen epilepsy development and the functional state of the nervous system, Giperbaricheskie epilepsiya i narkoz (Hyperbaric Epilepsy and Narcosis), Leningrad, 1968, pp. 11–18.

  3. Balentine, J.D., Pathology of Oxygen Toxicity, New York, 1982.

  4. Selivra, A.I., Giperbaricheskaya oksigenatsiya. Fiziologicheskie mekhanizmy reaktsii nervnoi sistemy (Hyperbaric oxygenation. Physiological mechanisms of reactions of the central nervous system to hyperoxia), Leningrad, 1983.

  5. Ciarlone, G.E., Hinojo, C.M., Stavitzski, N.M., and Dean, J.B., CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings, Redox. Biol., 2019, vol. 27, p. 101159. doi: 10.1016/j.redox.2019.101159

  6. Bean, J.W., Zee, D., and Thom, B., Pulmonary changes with convulsions induced by drugs and oxygen at high pressure, J. Appl. Physiol., 1966, vol. 21(3), pp. 865–872. doi: 10.1152/jappl.1966.21.3.865

  7. Demchenko, I.T., Zhilyaev, S.Y., Moskvin, A.N., Piantadosi, C.A., and Allen, B.W., Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury, Am. J. Physiol., Lung Cell. Mol. Physiol., 2011, vol. 300(1), pp. L102–L111. doi: 10.1152/ajplung.00178.2010

  8. Pilla, R., Landon, C.S., and Dean, J.B., A potential early physiological marker for CNS oxygen toxicity: hyperoxic hyperpnea precedes seizure in unanesthetized rats breathing hyperbaric oxygen, J. Appl. Physiol. (1985), 2013, vol. 114(8), pp. 1009–1020. doi: 10.1152/japplphysiol.01326.2012

  9. Gasier, H.G., Demchenko, I.T., Moskvin, A.N., Zhilyaev, S.Yu., Krivchenko, A.I., and Piantadosi, C.A., Adrenoceptor blockade modifies cardiovascular and regional cerebral blood flow responses to hyperbaric hyperoxia: Protection against CNS oxygen toxicity, J. Appl. Physiol. (1985), 2018. doi: 10.1152/japplphysiol.00540.2018

  10. Agon, P., Goethals, P., Van Haver, D., and Kaufman, J.M., Permeability of the blood-brain barrier for atenolol, J. Pharm. Pharmacol., 1991, vol. 43(8), pp. 597–600. doi: 10.1111/j.2042-7158.1991.tb03545.x

  11. Ciccarelli, M., Sorriento, D.E., Coscioni, E., Iaccarino, G., and Santulli, G., Adrenergic receptors, Endocrinology of the Heart in Health and Disease, Ch. 11, 2016, pp. 285–315.

  12. Oshima, N., Onimaru, H., Yamamoto, K., Takechi, H., Nishuda, Y., Oda, T., and Kumagai, H., Expression and functions of β1- and β2-adrenergic receptors on the bulbospinal neurons in the rostral ventrolateral medulla, Hypertens. Res., 2014, vol. 37(11), pp. 976–983. doi: 10.1038/hr.2014.112

  13. Wang, F. and Lidow, M.S., Alpha 2A-adrenergic receptors are expressed by diverse cell types in the fetal primate cerebral wall, J. Comp. Neurol., 1997, vol. 378, pp. 493–507.

  14. Bylund, D.B., Subtypes of α1- and α2-adrenergic receptors, FASEB J., 1992, vol. 6(3), pp. 832–839. doi: 10.1096/fasebj.6.3.1346768

  15. Hertz, L., Lovatt, D., Goldman, S.A., and Nedergaard, M., Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i, Neurochem. Int., 2010, vol. 57(4), pp. 411–420. doi: 10.1016/j.neuint.2010.03.019

  16. Demchenko, I.T., Measurement of organ blood flow by the method of hydrogen clearance, Fiziol. Zh. SSSR im. I.M. Sechenova, 1981, vol. 67(1), pp. 178–183.

  17. Zhilyaev, S.Yu., Platonova, T.F., Alekseeva, O.S., Nikitina, E.R., and Demchenko, I.T., Adaptive mechanisms of baroreflectory regulation of the cardiovascular system in extreme hyperoxia, J. Evol. Biochem. Physiol., 2019, vol. 55(5), pp. 365–371.

  18. Demchenko, I.T., Zhilyaev, S.Y., Moskvin, A.N., Krivchenko, A.I., Piantadosi, C.A., and Allen, B.W., Baroreflex-mediated cardiovascular responses to hyperbaric oxygen, J. Appl. Physiol. (1985), 2013, vol. 115(6), pp. 819–828. doi: 10.1152/japplphysiol.00625.2013

  19. Stamler, J.S., Jia, L., Eu, J.P., McMahon, T.J., Demchenko, I.T., Bonaventura, J., Gernert, K., and Piantadosi, C.A., Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient, Science, 1997, vol. 276 (5321), pp. 2034–2037. doi: 10.1126/science.276.5321.2034

  20. Oury, T.D., Ho, Y.S., Piantadosi, C.A., and Crapo, J.D., Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity, Proc. Natl. Acad. Sci. USA, 1992, vol. 89(20), pp. 9715–9719. doi: 10.1073/pnas.89.20.9715

  21. Demchenko, I.T., Boso, A.E., Bennett, P.B., Whorton, A.R., and Piantadosi, C.A., Hyperbaric oxygen reduces cerebral blood flow by inactivating nitric oxide, Nitric Oxide, 2000, vol. 4(6), pp. 597–608. doi: 10.1006/niox.2000.0313

  22. Zhilyaev, S.Yu., Moskvin, A.N., Platonova, T.F., Gutsaeva, D.R., Demchenko, I.T., and Churilina, I.V., Hyperoxic vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide anions, Neurosci. Behav. Physiol., 2003, vol. 33(8), pp. 783–787. doi: 10.1023/a:1025145331149.

  23. Demchenko, I.T., Moskvin, A.N., Krivchen-ko, A.I., Piantadosi, C.A., and Allen, B.W., Nitric oxide-mediated central sympathetic excitation promotes CNS and pulmonary O2 toxicity, J. Appl. Physiol., 2012, vol. 112(11), pp. 1814–1823. doi: 10.1152/japplphysiol.00902.2011

  24. U’Prichard, D.C. and Snyder, S.H., Distinct α-noradrenergic receptors differentiated by binding and physiological relationship, Life Sci., 1979, vol. 24, pp. 79–88.

  25. Fischer, W., Lasek, R., and Müller, M., Anticonvulsant effects of propranolol and their pharmacological modulation, Pol. J. Pharmacol. Pharm., 1985, vol. 37(6), pp. 883–896.

  26. Mohan, A., Nathiya, S., and Raja, A., Anticonvulsant effect of propranolol in maximum electro shock method induced convulsions in rats, J. Pharm. Res., 2018, 12(4), pp. 656–659.

  27. Louis, W.J., Papanicolaou, J., Summers, R.J., and Vajda, F.J.E., Role of central beta-adrenoceptors in the control of pentylenetetrazol-induced convulsions in rats, Br. J. Pharmacol., 1982, vol. 75(3), pp. 441–446. doi: 10.1111/j.1476-5381.1982.tb09159.x

  28. Fischer, W., Anticonvulsant profile and mechanism of action of propranolol and its two enantiomers, Seizure, 2002, vol. 11(6), pp. 285–302. doi: 10.1053/seiz.2001.0644

  29. Anlezark, G., Horton, R., and Meldrum, B., The anticonvulsant action of the (–)- and (+)-enantiomers of propranolol, J. Pharm. Pharmacol., 1979, vol. 31(7), pp. 482–483. doi: 10.1111/j.2042-7158.1979.tb13563.x

  30. Eugene, A.R. and Nicholson, W.T., The brain and propranolol pharmacokinetics in the elderly, Brain, 2015, vol. 6(1–4), pp. 5–14.

  31. Dahlgren, N., Ingvar, M., and Siesjo, B.K., Effect of Propranolol on Local Cerebral Blood Flow under Normocapnic and Hypercapnic Conditions, J. Cereb. Blood Flow Metab., 1981, vol. 1(4), pp. 429–436. doi: 10.1038/jcbfm.1981.47

Download references

Funding

This work was supported by the Program for Fundamental Research of the Presidium of the Russian Academy of Sciences no. 18 (project no. 0132-2018-0011) and, in part, by the state budget for the Sechenov Institute of Evolutionary Physiology and Biochemistry (no. 007-00096-18; reg. no. АААА-А18-118012290142-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Alekseeva.

Ethics declarations

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed.

This study did not involve human subjects as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platonova, T.F., Zhilyaev, S.Y., Alekseeva, O.S. et al. Blockade of Brain Adrenoreceptors Delays Seizure Development during Hyperbaric Oxygen Breathing. J Evol Biochem Phys 56, 425–433 (2020). https://doi.org/10.1134/S0022093020050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020050051

Keywords:

Navigation