Skip to main content
Log in

Effects of Gd3+ and Ca2+ on Frog Heart Muscle Contractility and Respiration, Swelling and Inner Membrane Potential of Rat Heart Mitochondria

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

We studied the inotropic and chronotropic effects of gadolinium ions (Gd3+) on contractility of frog Rana ridibunda heart muscle preparations. In addition, the influence of Gd3+ on oxygen uptake rates, swelling and the mitochondrial inner membrane potential (ΔΨmito) were studied in glutamate- and malate-energized rat heart mitochondria (RHM). It was found that Gd3+ decreases the amplitude and frequency of spontaneous heart contractions. At the same time, Gd3+ prevents Ca2+-induced swelling of these organelles in saline media and falling of ΔΨmito. In this case, regardless of the presence of Ca2+ in the medium, Gd3+ has a weak effect on mitochondrial state 3 or 3UDNP respiration (in the presence of 2,4-dinitrophenol). In calcium free experiments, Gd3+ stimulates passive swelling of RHM. These effects of Gd3+ may indicate that Gd3+ has no toxic effect on RHM but, on the other hand, inhibits opening of the mitochondrial permeability transition pore (MPTP) in the inner membrane. Our data provide better insight into the mechanisms of action of rare earth elements on Ca2+-dependent processes in the myocardium of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

СаV :

voltage-gated Ca2+ channels

СaV1.2:

L-type voltage-gated Ca2+ channels

GBCAs:

gadolinium-based contrast agents

F max :

spontaneous heart contraction frequency

ΔΨmito :

mitochondrial inner membrane potential

IMM:

inner mitochondrial membrane

DNP:

2,4-dinitrophenol

CM:

cardiomyocytes

RHM:

rat heart mitochondria

MPTP:

Ca2+-dependent mitochondrial permeability transition pore

NSF:

nephrogenic systemic fibrosis

SAN:

sinoatrial node

REFERENCES

  1. Haley, T.J., Raymond, K., Komesu, N., and Upham, H.C., Toxicological and pharmacological effects of gadolinium and samarium chlorides, Br. J. Pharmacol. Chemother., 1961, vol. 17, pp. 526–532. doi: 10.1111/j.1476-5381.1961.tb01139.x

  2. Ramalho, J., Ramalho, M., Jay, M., Burke, L.M., and Semelka, R.C., Gadolinium toxicity and treatment, Magn. Res. Imaging, 2016, vol. 34, pp. 1394–1398. doi: 10.1016/j.mri.2016.09.005

  3. Rogosnitzky, M. and Branch, S., Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms, Biometals, 2016, vol. 29, pp. 365–376. doi: 10.1007/s10534-016-9931-7

  4. Akhtar, M.J., Ahamed, M., Alhadlaq, H., and Alrokayan, S., Toxicity mechanism of gadolinium oxide nanoparticles and gadolinium ions in human breast cancer cells, Curr. Drug Metab., 2019, vol. 20, pp. 907–917. doi: 10.2174/1389200220666191105113754

  5. Chentsov, Yu.S., Khondriom—sovokupnost mitochondrii kletki (The Chondriome, an Aggregate of Mitochondria in a Cell), Soros Obraz. Zh., 1997, vol. 12, pp. 10–17.

  6. Touraki, M., Thomopoulos, G.N., and Beis, I., Effects of calcium depletion and calcium paradox on the ultrastructure of the frog heart, J. Submicrosc. Cytol. Pathol., 1991, vol. 23, pp. 295–303.

  7. Bakeeva, L.E., Skulachev, V.P., and Chentsov, Yu.S., Intermitochondrial contacts in cardiomyocytes, Tsitol., 1982, vol. 2, pp. 161–166.

  8. Korotkov, S.M., Sobol, K.V., Shemarova, I.V., Furaev, V.V., Novozhilov, A.V., and Nesterov, V.P., Effect of Nd3+ on calcium-dependent processes in isolated rat heart mitochondria and frog heart muscle, Biol. Membr., 2018, vol. 35, pp. 200–207. doi: 10.7868/S0233475518030040

  9. Korotkov, S.M., Sobol, K.V., Shemarova, I.V., Furaev, V.V., Shumakov, A.R., and Nesterov, V.P., A comparative study of the effects of Pr3+ and La3+ ions on calcium dependent processes in frog cardiac muscle and rat heart mitochondria, Biophysics, 2016, vol. 61, pp. 733–740. doi: 10.1134/S0006350916050122

  10. Shemarova, I.V., Sobol, K.V., Korotkov, S.M., and Nesterov, V.P., Effect of yttrium on calcium-dependent processes in vertebrate myocardium, J. Evol. Biochem. Physiol., 2014, vol. 50, pp. 221–226. doi: 10.1134/S0022093014030041

  11. Brierley, G.P., The uptake and extrusion of monovalent cations by isolated heart mitochondria, Mol. Cell Biochem., 1976, vol. 10(1), pp. 41–63. doi:10.1007/BF01731680

  12. Brierley, G.P., Jurkowitz, M., Chávez, E., and Jung, D.W., Energy-dependent contraction of swollen heart mitochondria, J. Biol. Chem., 1977, vol. 252, pp. 7932–7939.

  13. Tedeschi, H. and Harris, D.L., Some observations on the photometric estimation of mitochondrial volume, Biochim. Biophys. Acta, 1958, vol. 28(2), pp. 392–402. doi:10.1016/0006-3002(58)90487-6

  14. Panov, A.V., Prakticheskaya mitokhondriologiya (Practical Mitochondriology), Novosibirsk, 2015. doi: 10.13140/2.1.1599.3127

  15. Chance, B. and Williams, G.R., Respiratory enzymes in oxidative phosphorylation. III. The steady state, J. Biol. Chem., 1955, vol. 217(1), pp. 409–427.

  16. Waldmeier, P.C., Feldtrauer J.J., Qian T., and Lemasters, J., Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811, J. Mol. Pharmacol., 2002, vol. 62, pp. 22–29. doi: 10.1124/mol.62.1.22

  17. Bers, D.M., Cardiac excitation-contraction coupling, Nature, 2002, vol. 10, pp. 198–205. doi: 10.1038/415198a

  18. Talbert, R.L. and Bussey, H.I., Update on calcium-channel blocking agents, Clin. Pharm., 1983, vol. 2, pp. 403–416.

  19. Biagi, B.A. and Enyeart, J.J., Gadolinium blocks low- and high-threshold calcium currents in pituitary cells, Am. J. Physiol., 1990, vol. 259, pp. 515–520. doi: 10.1152/ajpcell.1990.259.3.C515

  20. Triggle, D.J., Calcium-channel drugs: structure-function relationships and selectivity of action, J. Cardiovasc. Pharmacol., 1991, vol. 18, pp. S1–S6.

  21. Mitchell, P. and Moyle, J., Translocation of some anions cations and acids in rat liver mitochondria, Eur. J. Biochem., 1969, vol. 9, pp. 149–155. doi: 10.1111/j.1432-1033.1969.tb00588.x

  22. Zhao, J., Jin, J.C., Zhou, Z.Q., Xia, C.F., Yang, X.G., Jiang, F.L., Dai, J., and Liu, Y., High concentration of gadolinium ion modifying isolated rice mitochondrial biogenesis, Biol. Trace Elem. Res., 2013, vol. 156, pp. 308–315. doi: 10.1007/s12011-013-9821-6

  23. Shemarova, I.V., Korotkov, S.M., and Nesterov, V.P., Effect of oxidative processes in mitochondria on contractility of heart muscle of the frog Rana temporaria. Actions of Cd2+, J. Evol. Biochem. Physiol., 2011, vol. 47, pp. 360–365. doi: 10.1134/S0022093011040074

  24. Szabo, I. and Zoratti, M., Mitochondrial channels: ion fluxes and more, Physiol. Rev., 2014, vol. 94, pp. 519–608. doi: 10.1152/physrev.00021.2013

  25. Korotkov, S.M. and Saris, N.E., Influence of Tl+ on mitochondrial permeability transition pore in Ca2+-loaded rat liver mitochondria, J. Bioenerg. Biomembr., 2011, vol. 43, pp. 149–162. doi: 10.1007/s10863-011-9341-z

  26. Korotkov, S.M., Konovalova, S., Emelyanova L., and Brailovskaya, I., Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria, J. Inorg. Biochem., 2014, vol. 141, pp. 1–9. doi: 10.1016/j.jinorgbio.2014.08.004

Download references

ACKNOWLEDGMENTS

Authors are grateful to I.V. Brailovskaya for her help in isolating mitochondria and polarographic measuring their oxygen uptake rates. Studies on determining a mitochondrial membrane potential were carried out on the basis of the Research Resource Center equipment at Sechenov Institute of Evolutionary Physiology and Biochemistry.

Funding

This work was supported by a state contract with the Federal Agency for Scientific Organizations of Russia (project no. AAAA-A18-118012290142-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Korotkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkov, S.M., Sobol, K.V., Schemarova, I.V. et al. Effects of Gd3+ and Ca2+ on Frog Heart Muscle Contractility and Respiration, Swelling and Inner Membrane Potential of Rat Heart Mitochondria. J Evol Biochem Phys 56, 541–549 (2020). https://doi.org/10.1134/S0022093020060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020060071

Keywords:

Navigation