Skip to main content
Log in

A Comparison of Microglia Detection in Mammals and Humans Using Purinergic Receptor P2Y12 Labeling

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The problem of choosing an adequate method to detect microglia is relevant for modern neurophysiological and interdisciplinary research due to the lack of universal approaches allowing visualization of this cell population in the brain of humans and laboratory animals. In the present study, the possibility of using the purinergic P2Y12 receptor as a marker for the comparative analysis of microglia in humans and some unrelated animal species (rabbit, rat, mouse, ground squirrel) was investigated. For the study, antibodies to a recombinant peptide corresponding to 303–342 amino acids of the human P2Y12 receptor were used. The best results for microglia detection were obtained in humans, rabbit, and rat. A nonspecific reaction of cells other than microglia was found in a ground squirrel and mouse, the negative impact of which on the quality of resulting images can be reduced by the means of confocal microscopy. In all cases, the absence of immunopositive macrophages and amoeboid microglial cells was observed, indicating the promising use of P2Y12 as a highly selective marker of resting microglia. The present study provides the first visualization of microglia in the brain of a rabbit and ground squirrel using antibodies to the P2Y12 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Greer K, Basso EKG, Kelly C, Cash A, Kowalski E, Cerna S, Ocampo CT, Wang X, Theus MH (2020) Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairments. Sci Rep 10(1): 15374. https://doi.org/10.1038/s41598-020-72380-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nazarian S, Abdolmaleki Z, Torfeh A, Shirazi Beheshtiha SH (2020) Mesenchymal stem cells with modafinil (gold nanoparticles) significantly improves neurological deficits in rats after middle cerebral artery occlusion. Exp Brain Res 238(11): 2589–2601. https://doi.org/10.1007/s00221-020-05913-9

    Article  CAS  PubMed  Google Scholar 

  3. Deb BK, Chakraborty P, Gopurappilly R, Hasan G (2020) SEPT7 regulates Ca2+ entry through Orai channels in human neural progenitor cells and neurons. Cell Calcium 90: 102252. https://doi.org/10.1016/j.ceca.2020.102252

    Article  CAS  PubMed  Google Scholar 

  4. Bielefeld P, Abbink MR, Davidson AR, Reijner N, Abiega O, Lucassen PJ, Korosi A, Fitzsimons CP (2021) Early life stress decreases cell proliferation and the number of putative adult neural stem cells in the adult hypothalamus. Stress 24(2): 189–195. https://doi.org/10.1080/10253890.2021.1879787

    Article  CAS  PubMed  Google Scholar 

  5. Lorenzen K, Mathy NW, Whiteford ER, Eischeid A, Chen J, Behrens M, Chen XM, Shibata A (2021) Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Mol Biol Rep 48(1): 563–584. https://doi.org/10.1007/s11033-020-06092-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ping S, Qiu X, Kyle M, Zhao LR (2021) Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis 12(1): 72–92. https://doi.org/10.14336/AD.2020.0406

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wei H, Zhou W, Hu G, Shi C (2021) Induction of mesenchymal stem cell‑like transformation in rat primary glial cells using hypoxia, mild hypothermia and growth factors. Mol Med Rep 23(2): 1. https://doi.org/10.3892/mmr.2020.11760

    Article  CAS  Google Scholar 

  8. Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM (2012) Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 343(3): 596–607. https://doi.org/10.1124/jpet.112.198341

    Article  CAS  PubMed  Google Scholar 

  9. Samoilov M, Churilova A, Gluschenko T, Vetrovoy O, Dyuzhikova N, Rybnikova E (2016) Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance. Acta Histochem 118(2): 80–89. https://doi.org/10.1016/j.acthis.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  10. Daneshtalab N, Doré JJ, Smeda JS (2010) Troubleshooting tissue specificity and antibody selection: Procedures in immunohistochemical studies. J Pharmacol Toxicol Methods 61(2): 127–135. https://doi.org/10.1016/j.vascn.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Weller MG (2016) Quality Issues of Research Antibodies. Analytical chemistry insights 11: 21–27. https://doi.org/10.4137/ACI.S31614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D (2010) Antibody validation. BioTechniques 48(3): 197–209. https://doi.org/10.2144/000113382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gown AM (2016) Diagnostic Immunohistochemistry: What Can Go Wrong and How to Prevent It. Archives of pathology & laboratory medicine 140(9): 893–898. https://doi.org/10.5858/arpa.2016-0119-RA

    Article  Google Scholar 

  14. Holmseth S, Zhou Y, Follin-Arbelet VV, Lehre KP, Bergles D E, Danbolt NC (2012) Specificity controls for immunocytochemistry: the antigen preadsorption test can lead to inaccurate assessment of antibody specificity. J Histochem Cytochem 60(3): 174–187. https://doi.org/10.1369/0022155411434828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nuovo G (2016) False-positive results in diagnostic immunohistochemistry are related to horseradish peroxidase conjugates in commercially available assays. Ann Diagnost Pathol 25: 54–59. https://doi.org/10.1016/j.anndiagpath.2016.09.010

    Article  Google Scholar 

  16. Korzhevskii DE, Otellin VA, Grigorev IP, Petrova ES, Gilerovich EG, Zinkova NN (2008) Immunocytochemical detection of neuronal NO synthase in rat brain cells. Neurosci Behav Physiol 38(8): 835-838. https://doi.org/10.1007/s11055-008-9063-9

    Article  CAS  PubMed  Google Scholar 

  17. Ward JM, Rehg JE (2014) Rodent Immunohistochemistry: Pitfalls and Troubleshooting. Veterinary Pathology 51(1): 88–101. https://doi.org/10.1177/0300985813503571

    Article  CAS  PubMed  Google Scholar 

  18. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene Iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224(3): 855–862. https://doi.org/10.1006/bbrc.1996.1112

    Article  CAS  PubMed  Google Scholar 

  19. Korzhevskii DE, Kirik OV, Sukhorukova EG (2015) Immunocytochemistry of Microglial Cells. In: Merighi A., Lossi L. (eds) Immunocytochemistry and Related Techniques. Neuromethods. Humana Press. New York. 101: 209–224. https://doi.org/10.1007/978-1-4939-2313-7_12

    Article  CAS  Google Scholar 

  20. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44(3): 242–250. https://doi.org/10.1002/glia.10293

    Article  PubMed  Google Scholar 

  21. Mildner A, Huang H, Radke J, Stenzel W, Priller J (2017) P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65(2): 375–387. https://doi.org/10.1002/glia.23097

    Article  PubMed  Google Scholar 

  22. Koizumi S, Ohsawa K, Inoue K, Kohsaka S (2013) Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 61(1): 47–54. https://doi.org/10.1002/glia.22358

    Article  PubMed  Google Scholar 

  23. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12): 1512–1519. https://doi.org/10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  24. Yu T, Zhang X, Shi H, Tian J, Sun L, Hu X, Cui W, Du D (2019) P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis 10(3): 165. https://doi.org/10.1038/s41419-019-1425-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen Z, Zhong D, Li G (2019) The role of microglia in viral encephalitis: a review. J Neuroinflammation 16(1): 76. https://doi.org/10.1186/s12974-019-1443-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á (2020) Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367(6477): 528–537. https://doi.org/10.1126/science.aax6752

    Article  CAS  PubMed  Google Scholar 

  27. Tuan LH, Lee LJ (2019) Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis 130: 104517. https://doi.org/10.1016/j.nbd.2019.104517.

    Article  CAS  PubMed  Google Scholar 

  28. Peng J, Liu Y, Umpierre AD, Xie M, Tian DS, Richardson JR, Wu LJ (2019) Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol Brain 12(1): 71. https://doi.org/10.1186/s13041-019-0492-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP (2015) Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem 59(3): 233–237. https://doi.org/10.4081/ejh.2015.2530

    Article  CAS  Google Scholar 

  30. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, et al. (2015) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1): D733–D745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

    Article  CAS  PubMed  Google Scholar 

  32. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bishop DP, Cole N, Zhang T, Doble PA, Hare DJ (2018) A guide to integrating immunohistochemistry and chemical imaging. Chem Soc Rev 47(11): 3770–3787. https://doi.org/10.1039/c7cs00610a

    Article  CAS  PubMed  Google Scholar 

  35. Ladner RC (2007) Mapping the epitopes of antibodies. Biotechnol. Genet Eng Rev 24: 1–30. https://doi.org/10.1080/02648725.2007.10648092

    Article  CAS  Google Scholar 

  36. Fritschy JM (2008) Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur J Neurosci 28(12): 2365–2370. https://doi.org/10.1111/j.1460-9568.2008.06552.x

    Article  PubMed  Google Scholar 

  37. Ramírez AI, de Hoz R, Fernández-Albarral JA, Salobrar-Garcia E, Rojas B, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Pérez MP, Vidal-Sanz M, Triviño A, Ramírez JM, Salazar JJ (2020) Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. Sci Rep 10(1): 4890. https://doi.org/10.1038/s41598-020-61848-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to Prof. N.K. Klichkhanov and PhD student S.I. Chalabov (both of the Dagestan State University) for the provision of ground squirrels Spermophilus pygmaeus used in this study.

Funding

This work was implemented within the governmental assignment to the IEM and IEPhB (Russian Academy of Sciences, St. Petersburg).

Author information

Authors and Affiliations

Authors

Contributions

The idea of the study and experimental design: D.E.K.; data collection: D.L.Ts. and O.S.A.; manuscript writing and editing: D.E.K., O.V.K., D.L.Ts., and O.S.A.

Corresponding author

Correspondence to O. S. Alekseeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 5, pp. 363–372https://doi.org/10.31857/S0044452921050028.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzhevskii, D.E., Tsyba, D.L., Kirik, O.V. et al. A Comparison of Microglia Detection in Mammals and Humans Using Purinergic Receptor P2Y12 Labeling. J Evol Biochem Phys 57, 991–1000 (2021). https://doi.org/10.1134/S002209302105001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302105001X

Keywords:

Navigation