Skip to main content
Log in

Impact of Competitive Conditions on Amplitudes of Event-Related Potentials during Verbal Creative and Noncreative Task Performance

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Brain activity changes significantly under various conditions of social interaction. However, the impact of the context of social interactions on neurophysiological correlates of cognitive and creative activity per se has not been sufficiently addressed. Two polar types of interactions can be distinguished when solving tasks, cooperation or competition. This study was aimed to assess the impact of competitive conditions on the amplitudes of event-related potentials (ERPs) when solving creative and noncreative tasks. The subjects (26 males, 18 females) performed two types of tasks as individuals or dyads (male–male, female–female): a creative task to think up an unusual uses of simple everyday objects, and a noncreative task to enumerate objects from the presented categories. In each of the tasks, ERPs were compared during its competitive (dyadic) and individual performance. Competitive conditions led to a decrease in amplitudes of the components P1 and P2, as well as N400 and P600, during both creative and noncreative tasks, suggesting the difficulty of finding an answer. The percentage of answers found was also significantly lower under conditions of competitive versus individual task performance. Apparently, cognitive resources, when performing a task under social interaction conditions, are directed toward the assessment of partner’s responses and answers, as manifested in a decreased amplitude both of the earlier attention-related ERP components (P1, P2) and the later components related to semantic processing (N400, P600).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Shemyakina NV, Nagornova ZV (2021) Neurophysiological characteristics of competition in skills and cooperation in creativity task performance: a review of hyperscanning research. Human Physiology 47: 87. https://doi.org/10.1134/S0362119721010126

    Article  Google Scholar 

  2. Astolfi L, Cincotti F, Mattia D, De Vico Fallani F, Salinari S, Vecchiato G, Toppi J, Wilke C, Doud A, Yuan H, He B, Babiloni F (2010) Imaging the social brain: multi-subjects EEG recordings during the “Chicken’s game”. Annu Int Conf IEEE Eng Med Biol Soc. 2010: 1734. https://doi.org/10.1109/IEMBS.2010.5626708

    Article  CAS  PubMed  Google Scholar 

  3. Peng M, Wang X, Chen W, Chen T, Cai M, Sun X, Wang Y (2021) Cooperate or aggress? An opponent’s tendency to cooperate modulates the neural dynamics of interpersonal cooperation. Neuropsychologia 162: 108025. https://doi.org/10.1016/j.neuropsychologia.2021.108025

    Article  PubMed  Google Scholar 

  4. Cui F, Wang C, Cao Q, Jiao C (2019) Social hierarchies in third-party punishment: A behavioral and ERP study. Biol Psychol 146: 107722. https://doi.org/10.1016/j.biopsycho.2019.107722

    Article  PubMed  Google Scholar 

  5. Moore M, Katsumi Y, Dolcos S, Dolcos F (2021) Electrophysiological Correlates of Social Decision-making: An EEG Investigation of a Modified Ultimatum Game. J Cogn Neurosci 34: 54–78. https://doi.org/10.1162/jocn_a_01782

    Article  PubMed  Google Scholar 

  6. Tortosa MI, Lupiáñez J, Ruz M (2013) Race, emotion and trust: an ERP study. Brain Res 1494: 44–55. https://doi.org/10.1016/j.brainres.2012.11.037

    Article  CAS  PubMed  Google Scholar 

  7. Lu K, Qiao X, Hao N (2019) Praising or keeping silent on partner’s ideas: Leading brainstorming in particular ways. Neuropsychologia 124: 19–30. https://doi.org/10.1016/j.neuropsychologia.2019.01.004

    Article  PubMed  Google Scholar 

  8. Fink A, Grabner RH, Gebauer D, Reishofer G, Koschutnig K, Ebner F (2010) Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. Neuroimage 52: 1687–1695. https://doi.org/10.1016/j.neuroimage.2010.05.072

    Article  PubMed  Google Scholar 

  9. Xue H, Lu K, Hao N (2018) Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage 172: 527–537. https://doi.org/10.1016/j.neuroimage.2018.02.007

    Article  PubMed  Google Scholar 

  10. Lu K, Xue H, Nozawa T, Hao N (2019) Cooperation Makes a Group be More Creative. Cereb Cortex 29: 3457–3470. https://doi.org/10.1093/cercor/bhy215

    Article  PubMed  Google Scholar 

  11. Lu K, Teng J, Hao N (2020) Gender of partner affects the interaction pattern during group creative idea generation. Exp Brain Res 238: 1157–1168. https://doi.org/10.1007/s00221-020-05799-7

    Article  PubMed  Google Scholar 

  12. Lu K, Yu T, Hao N (2020) Creating while taking turns, the choice to unlocking group creative potential. Neuroimage 219: 117025. https://doi.org/10.1016/j.neuroimage.2020.117025

    Article  PubMed  Google Scholar 

  13. Lu K, Qiao X, Yun Q, Hao N (2021) Educational diversity and group creativity: Evidence from fNIRS hyperscanning. Neuroimage 243: 118564. https://doi.org/10.1016/j.neuroimage.2021.118564

    Article  PubMed  Google Scholar 

  14. Mayseless N, Hawthorne G, Reiss AL (2019) Real-life creative problem solving in teams: fNIRS based hyperscanning study. Neuroimage 203: 116161. https://doi.org/10.1016/j.neuroimage.2019.116161

    Article  PubMed  Google Scholar 

  15. Guilford JP (1967) The Nature of Human Intelligence. McGraw-Hill, New York.

    Google Scholar 

  16. Raigorodsky DYa (ed) (2001) Practical psychodiagnostics. Techniques and tests. Tutorial. BAKHRAKH-M Publishing House, Samara, 672 p. (In Russ).

    Google Scholar 

  17. Vigário RN (1997) Extraction of ocular artifacts from EEG using independent component analysis. EEG and Clin. Neurophysiol 103: 395–404. https://doi.org/10.1016/s0013-4694(97)00042-8

    Article  Google Scholar 

  18. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37: 163–178. https://doi.org/10.1111/1469-8986.3720163

    Article  CAS  PubMed  Google Scholar 

  19. Tereshchenko EP, Ponomarev VA, Kropotov YuD, Müller A (2009) Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and event-related potentials. Hum Physiol 35:241–247. https://doi.org/10.1134/S0362119709020157

    Article  Google Scholar 

  20. Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24: 95–112.

    Article  Google Scholar 

  21. Fink A, Koschutnig K, Benedek M, Reishofer G, Ischebeck A, Weiss EM, Ebner F (2012) Stimulating creativity via the exposure to other people’s ideas. Hum Brain Mapp 33: 2603–2610. https://doi.org/10.1002/hbm.21387

    Article  PubMed  Google Scholar 

  22. Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343–361. https://doi.org/10.1016/s0301-0082(98)00011-2

    Article  CAS  PubMed  Google Scholar 

  23. Chica AB, Lasaponara S, Lupiáñez J, Doricchi F, Bartolomeo P (2010) Exogenous attention can capture perceptual consciousness: ERP and behavioural evidence. Neuroimage 51: 1205–1212. https://doi.org/10.1016/j.neuroimage.2010.03.002

    Article  PubMed  Google Scholar 

  24. Schindler S, Bruchmann M, Gathmann B, Moeck R, Straube T (2021) Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex 136: 14–27. https://doi.org/10.1016/j.cortex.2020.12.011

    Article  PubMed  Google Scholar 

  25. Cao F, Rickles B, Vu M, Zhu Z, Chan DH, Harris LN, Stafura J, Xu Y, Perfetti CA (2013) Early stage visual-orthographic processes predict long-term retention of word form and meaning: a visual encoding training study. J Neurolinguistics 26: 440–461. https://doi.org/10.1016/j.jneuroling.2013.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rabovsky M, Sommer W, Abdel Rahman R (2012) Depth of conceptual knowledge modulates visual processes during word reading. J Cogn Neurosci 24: 990–1005. https://doi.org/10.1162/jocn_a_00117

    Article  PubMed  Google Scholar 

  27. Medvedev SV, Rudas MS, Pakhomov SV, Ivanitskii AM, Il’yuchenok IR, Ivanitskii GA (2003) Mechanisms of Selective Attention during Competitive Discrimination of Visual and Auditory Verbal Information: Positron Emission Tomography and Cortical Evoked Potential Studies. Hum Physiol 29: 694–702. https://doi.org/10.1023/B:HUMP.0000008840.16235.c8

    Article  Google Scholar 

  28. Rigoni D, Polezzi D, Rumiati R, Guarino R, Sartori G (2010) When people matter more than money: an ERPs study. Brain Res Bull 81: 445–452. https://doi.org/10.1016/j.brainresbull.2009.12.003

    Article  PubMed  Google Scholar 

  29. Kolassa IT, Musial F, Kolassa S, Miltner WH (2006) Event-related potentials when identifying or color-naming threatening schematic stimuli in spider phobic and non-phobic individuals. BMC Psychiatry 6: 38. https://doi.org/10.1186/1471-244X-6-38

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wieser MJ, Moscovitch DA (2015) The Effect of Affective Context on Visuocortical Processing of Neutral Faces in Social Anxiety. Front Psychol 6: 1824. https://doi.org/10.3389/fpsyg.2015.01824

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mercado F, Carretié L, Hinojosa JA, Peñacoba C (2009) Two successive phases in the threat-related attentional response of anxious subjects: neural correlates. Depress Anxiety 26: 1141–1150. https://doi.org/10.1002/da.20608

    Article  PubMed  Google Scholar 

  32. Thornhill DE, Van Petten C (2012) Lexical versus conceptual anticipation during sentence processing: frontal positivity and N400 ERP components. Int J Psychophysiol 83: 382–392. https://doi.org/10.1016/j.ijpsycho.2011.12.007

    Article  PubMed  Google Scholar 

  33. Bridger EK, Bader R, Kriukova O, Unger K, Mecklinger A (2012) The FN400 is functionally distinct from the N400. Neuroimage 63: 1334–1342. https://doi.org/10.1016/j.neuroimage.2012.07.047

    Article  PubMed  Google Scholar 

  34. Stróżak P, Abedzadeh D, Curran T (2016) Separating the FN400 and N400 potentials across recognition memory experiments. Brain Res 1635: 41–60. https://doi.org/10.1016/j.brainres.2016.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Ma Q, Wang C (2012) N400 as an index of uncontrolled categorization processing in brand extension. Neurosci Lett 525: 76–81. https://doi.org/10.1016/j.neulet.2012.07.043

    Article  CAS  PubMed  Google Scholar 

  36. Davenport T, Coulson S (2011) Predictability and novelty in literal language comprehension: an ERP study. Brain Res 1418: 70–82. https://doi.org/10.1016/j.brainres.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  37. Rataj K, Przekoracka-Krawczyk A, van der Lubbe RHJ (2018) On understanding creative language: The late positive complex and novel metaphor comprehension. Brain Res 1678: 231–244. https://doi.org/10.1016/j.brainres.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  38. Kröger S, Rutter B, Hill H, Windmann S, Hermann C, Abraham A (2013) An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Res 1527: 189–198.

    Article  PubMed  Google Scholar 

  39. Abraham A, Rutter B, Hermann C (2021) Conceptual expansion via novel metaphor processing: an ERP replication and extension study examining individual differences in creativity. Brain Lang 221: 105007. https://doi.org/10.1016/j.bandl.2021.105007

    Article  PubMed  Google Scholar 

  40. Zhang Z, Luo Y, Wang C, Warren CM, Xia Q, Xing Q, Cao B, Lei Y, Li H (2019) Identification and transformation difficulty in problem solving: Electrophysiological evidence from chunk decomposition. Biol Psychol 143: 10–21. https://doi.org/10.1016/j.biopsycho.2019.02.004

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the laboratory staff members V.A. Galkin, V.A. Vasenkina, A.V. Grokhotova for their contribution to data collection, as well as EEG file and self-assessments preprocessing.

Funding

This work was supported by the Russian Science Foundation; project no. 22-28-02012.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (N.V.Sh.); data collection and analysis (N.V.Sh.); writing and editing a manuscript (N.V.Sh.).

Corresponding authors

Correspondence to Zh. V. Nagornova or N. V. Shemyakina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in the study complied with the ethical standards formulated in Helsinki Declaration of 1964 and its subsequent modifications. Once familiarized with the study procedure, the participants gave their informed consent to be involved (Protocol no. 1-02 of February 02, 2022).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 1, pp. 33–43https://doi.org/10.31857/S0044452923010060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagornova, Z.V., Shemyakina, N.V. Impact of Competitive Conditions on Amplitudes of Event-Related Potentials during Verbal Creative and Noncreative Task Performance. J Evol Biochem Phys 59, 33–44 (2023). https://doi.org/10.1134/S0022093023010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023010039

Keywords:

Navigation