Skip to main content
Log in

Collective motions in computer models of water. Large-scale and long-time correlations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two-particle correlation functions describing the simultaneous motion of a pair of molecules initially separated by a given distance R0 are calculated to study collective effects in the diffusive motion of water molecules in molecular dynamics models. Various types of such functions and their dependences on the interaction potential, temperature, and the number of particles in the model are considered. At short times (of the order of ten picoseconds), these functions exhibit irregular behavior depending on R0. The most nontrivial and unexpected result was the detection of correlations in the displacements of pairs of particles that extend for tens of angstroms and last for hundreds of picoseconds. Such correlations are not observed in the random walk models of noninteracting particles. It is suggested that the observed large-scale correlations reveal the vortex-like motions of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kumar, G. Franzese, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E, 73, 041505 (2006).

    Article  Google Scholar 

  2. D. Laage and J. T. Hynes, Science, 111, 832–835 (2006).

    Article  Google Scholar 

  3. D. Laage and J. T. Hynes, J. Phys.Chem. B, 112, 14230–14242 (2008).

    Article  CAS  Google Scholar 

  4. J. R. Errington, P. G. Debenedetti, and S. Torquato, Phys. Rev. Let., 89, 215503 (2002).

    Article  Google Scholar 

  5. C. J. Fecko, J. J. Loparo, S. T. Roberts, and A. Tokmakoff, J. Chem. Phys., 122, 054506 (2005).

    Article  Google Scholar 

  6. I. Z. Fisher, Zh. èskp. Teor. Fiz., 61, 1647–1659 (1971).

    CAS  Google Scholar 

  7. T. V. Lokotosh and N. P. Malomuzh, Physica A, 286, 474–488 (2000).

    Article  CAS  Google Scholar 

  8. T. V. Lokotosh, N. P. Malomuzh, and K. S. Shakun, J. Mol. Liquids, 96/97, 245–263 (2002).

    Article  Google Scholar 

  9. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, J. Mol. Liquids, 137, 1–24 (2008).

    Article  CAS  Google Scholar 

  10. N. P. Malomuzh and I. Z. Fisher, Zh. Struct. Khim., 14, 1105/1106 (1973).

    Google Scholar 

  11. N. P. Malomuzh and I. Z. Fisher, Physics of Liquid State, 1, 33–37, Kiev (1973).

    CAS  Google Scholar 

  12. T. V. Lokotosh, N. P. Malomuzh, and K. N. Pankratov, J. Struct. Chem., 54,Suppl. 2, S197–S204 (2013).

    Article  Google Scholar 

  13. N. P. Malomuzh, Private Communication (2007).

  14. G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin, Ros. Khim. Zh., 53, 25–32 (2009).

    CAS  Google Scholar 

  15. G. Malenkov, Yu. Naberukhin, and V. Voloshin, Struct. Chem., 22, 459–463 (2011).

    Article  CAS  Google Scholar 

  16. G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin., 86, (2012).

  17. V. I. Poltev, T. A. Grokhlina, and G. G. Malenkov, J. Biomol. Struct. Dyn., 2, 421–429 (1984).

    Article  Google Scholar 

  18. G. G. Malenkov, D. L. Tytik, and E. A. Zheligovskaya, J. Mol. Liquids, 82, 27–38 (1999).

    Article  CAS  Google Scholar 

  19. K. Takemura and A. Kitao, J. Phys. Chem. B, 111, 11870–11872 (2007).

    Article  CAS  Google Scholar 

  20. G. Raabe and R. J. Sadus, J. Chem. Phys., 137, 104512 (2012).

    Article  Google Scholar 

  21. D. Rozmanov and P. G. Kusalik, J. Chem. Phys., 136, 044507 (2012).

    Article  Google Scholar 

  22. B. J. Alder and T. E. Wainwright, Phys. Rev. A, 1, 18–21 (1970).

    Article  Google Scholar 

  23. M. I. Kotelyanskii, M. A. Mazo, A. G. Grivtsov, and E. F. Oleinik, Molecular Dynamics Simulation of the Glass Transition and Shear Deformation in Two-Dimensional Glass, Preprint. Joint Institute of Chemical Physics, Chernogolovka (1988); The Method of Molecular Dynamics in Physical Chemistry, Nauka, Moscow (1996), pp 100–104.

    Google Scholar 

  24. J. Higo, M. Sasai, H. Shirai, H. Nakamura, and T. Kugimiya, Proc. Nat. Acad. Sci., 98, 5961–5964 (2001).

    Article  CAS  Google Scholar 

  25. A. N. Dickey and M. J. Stevens, Phys. Rev. E, 86, 051601 (2012).

    Article  Google Scholar 

  26. L. Berthier and G. Biroli, Rev. Mod. Phys., 83, 587–645 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Voloshin.

Additional information

Original Russian Text © 2013 V. P. Voloshin, G. G. Malenkov, Yu. I. Naberukhin.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 2, pp. S239–S257, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voloshin, V.P., Malenkov, G.G. & Naberukhin, Y.I. Collective motions in computer models of water. Large-scale and long-time correlations. J Struct Chem 54 (Suppl 2), 233–251 (2013). https://doi.org/10.1134/S0022476613080052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613080052

Keywords

Navigation