Skip to main content
Log in

Star-like dextran-polyacrylamide polymers: Prospects of use in nanotechnologies

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Branched star-like dextran-polyacrylamide copolymers in nonionic and ionic forms are used as matrices for the fabrication of silver nanoparticles. It is demonstrated that due to the features of their molecular structure providing a high local concentration of functional groups, branched polymers stabilize silver nanoparticles more efficiently as compared with their linear analogs. Stable silver colloids are obtained in a branched anionic matrix, meanwhile a linear matrix does not stabilize a nanosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Subbotin and A. N. Semenov, Polym. Sci., Ser. A, 49, No. 12, 2139–2172 (2007).

    Article  CAS  Google Scholar 

  2. I. I. Potemkin and V. V. Palyulin, Polym. Sci., Ser. A, 51, No. 2, 163–195 (2009).

    Article  CAS  Google Scholar 

  3. J.-J. Flat, Polym. Degrad. Stab., 92, 2278–2286 (2007).

    Article  CAS  Google Scholar 

  4. R. A. Stater, T. O. McDonald, D. J. Adams, E. R. Draper, J. V. M. Weaver, and S. P. Rannard, Soft Matter, 8, 9816–9827 (2012).

    Article  Google Scholar 

  5. K. Chang, N. C. Rubright, P. D. Lowery, and L. J. Taite, J. Polym. Sci., Part A: Polym. Chem., 51, No. 9, 2068–2078 (2013).

    Article  CAS  Google Scholar 

  6. D. Neugebauer, P. Maksym-Bebenek, A. Mielanczyk, and T. Biela, Polym. Eng. Sci., 53, No. 6, 1146–1153 (2013).

    Article  CAS  Google Scholar 

  7. T. M. Birshtein and V. M. Amoskov, Polym. Sci., Ser. C, 42, No. 12, 2286–2327 (2000).

    CAS  Google Scholar 

  8. L. I. Klushin, T. M. Birshtein, and V. V. Amoskov, Macromoecules, 34, No. 14, 4739–4752 (2001).

    Google Scholar 

  9. O. V. Borisov and M. Daoud, Macromolecules, 34, No. 23, 8286–8293 (2001).

    Article  CAS  Google Scholar 

  10. A. A. Mercurieva, T. M. Birshtein, E. B. Zhulina, P. Isakovlev, J. van Male, and F. A. M. Leemakers, Macromolecules, 35, No. 12, 4739–4752 (2002).

    Article  CAS  Google Scholar 

  11. O. V. Borisov, J. Phys. II (Fr.), 6, No. 1, 1–19 (1996).

    CAS  Google Scholar 

  12. O. V. Borisov and E. B. Zhulina, Eur. Phys. J., 4, No. 2, 205–217 (1998).

    Article  CAS  Google Scholar 

  13. V. V. Amoskov and T. M. Birshtein, Macromolecules, 34, No. 15, 5331–5341 (2001).

    Article  CAS  Google Scholar 

  14. F. A. M. Leemakers, E. B. Zhulina, J. van Male, A. A. Mercurieva, G. J. Fleer, and T. M. Birshtein, Langmuir, 17, No. 14, 4459–4466 (2001).

    Article  Google Scholar 

  15. G. Widawski, M. Rawiso, and B. Francois, Nature, 369, 387–389 (1994).

    Article  CAS  Google Scholar 

  16. M. Heinrich, M. Rawiso, J. G. Zilliox, P. Lesieur, and J. P. Simon, Eur. Phys. J., Part E, 4, 131–142 (2001).

    Article  CAS  Google Scholar 

  17. M. Rawiso, J. Phys. IV, 9, No. 1, 147 (1999).

    CAS  Google Scholar 

  18. L. M. Bronshtein, S. N. Sidorov, and P. M. Valetskii, Russ. Chem. Rev., 73, No. 5, 542–553 (2004).

    Google Scholar 

  19. S. S. Ivanchev and A. N. Ozerin, Polym. Sci., Ser. C, 48, No. 3, 1531–1544 (2006).

    CAS  Google Scholar 

  20. P. G. De Gennes, Macromolecules, 13, No. 5, 1069–1075 (1980).

    Article  CAS  Google Scholar 

  21. C. Schneider, A. Jusufi, R. Farina, P. Pincus, M. Tirrell, and M. Ballauff, Phys. Rev. E, 82, 011401 (2010).

    Article  Google Scholar 

  22. A. V. Sybachin, M. Ballauff, E. Kesselman, J. Schmidt, Y. Talmon, L. Tsarkova, F. M. Mengel, and A. A. Yaroslavov, Langmuir, 27, No. 9, 5310–5315 (2011).

    Article  CAS  Google Scholar 

  23. K. Henzler, B. Haupt, S. Rosenfeldt, L. Harnau, T. Narayanan, and M. Ballauff, Phys. Chem. Chem. Phys., 13, 17599–17605 (2011).

    Article  CAS  Google Scholar 

  24. Y. Y. Xu, O. V. Borisov, M. Ballauff, and A. H. E. Muller, Langmuir, 26, No. 10, 6919–6926 (2010).

    Article  CAS  Google Scholar 

  25. N. Kutsevol, J. M. Guenet, N. Melnyk, D. Sarazin, and C. Rochas, Polymer, 47, 2061–2068 (2006).

    Article  CAS  Google Scholar 

  26. N. Kutsevol, T. Bezugla, M. Bezuglyi, and M. Rawiso, Macromol. Symp., 317/318, No. 1, 82–90 (2012).

    Article  Google Scholar 

  27. N. Kutsevol, M. Bezuglyi, T. Bezugla, and M. Rawiso, Macromol. Symp., 335, 12–16 (2014).

    Article  CAS  Google Scholar 

  28. A. L. Buchachenko, Russ. Chem. Rev., 72, No. 5, 419–437 (2003).

    Article  Google Scholar 

  29. L. M. Bronshtein, S. N. Sidorov, and P. M. Valetskii, Russ. Chem. Rev., 73, No. 5, 542–562 (2004).

    Google Scholar 

  30. B. M. Sergeev, M. V. Kuryukhin, and F. N. Bakhov, Moscow Univ. Chem. Bull., 42, No. 5, 308–314 (2001).

    CAS  Google Scholar 

  31. V. J. Mohanraj, Trop. J. Pharm. Res., 5, No. 1, 561–573 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kutsevol.

Additional information

Original Russian Text © 2015 N. V. Kutsevol, V. A. Chumachenko, M. Rawiso, V. F. Shkodich, O. V. Stoyanov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 5, pp. 1016–1023, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsevol, N.V., Chumachenko, V.A., Rawiso, M. et al. Star-like dextran-polyacrylamide polymers: Prospects of use in nanotechnologies. J Struct Chem 56, 959–966 (2015). https://doi.org/10.1134/S0022476615050200

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615050200

Keywords

Navigation