Skip to main content
Log in

New photocatalysts based on cadmium and zinc sulfides for hydrogen evolution from aqueous Na2S-Na2SO3 solutions under irradiation with visible light

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Noble metal-free, Cd1 − x Zn x S-based photocatalysts for hydrogen evolution from aqueous solutions of sodium sulfide and sodium sulfite upon irradiation with visible light (λ > 420 nm) have been synthesized and characterized by a complex of physicochemical methods. The effects of pH and catalyst and substrate concentrations on the rate of photocatalytic hydrogen evolution have been investigated. Under the optimal conditions, the quantum efficiency of the process is up to 12.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamaraev, K.I. and Parmon, V.N., Catal. Rev. Sci. Eng., 1980, vol. 22, no. 2, p. 261.

    Article  CAS  Google Scholar 

  2. Savinov, E.N., Cand. Sci. (Chem.) Dissertation, Novosibirsk: Boreskov Inst. of Catalysis, 1982.

    Google Scholar 

  3. Savinov, E.N., Doctoral (Chem.) Dissertation, Novosibirsk: Boreskov Inst. of Catalysis, 1993.

    Google Scholar 

  4. Gruzdkov, Yu.A., Savinov, E.N., and Parmon, V.N., Khim. Vys. Energ., 1986, vol. 20, no. 5, p. 445.

    CAS  Google Scholar 

  5. Gruzdkov, Yu.A., Savinov, E.N., and Parmon, V.N., Kinet. Katal., 1986, vol. 27, no. 1, p. 133.

    Google Scholar 

  6. Gruzdkov, Yu.A., Savinov, E.N., and Parmon, V.N., Khim. Fiz., 1988, vol. 7, no. 1, p. 44.

    CAS  Google Scholar 

  7. Li, Y.X., Lu, G.X., and Li, S.B., Appl. Catal., A, 2001, vol. 214, no. 2, p. 179.

    Article  CAS  Google Scholar 

  8. Fedoseev, V.I., Savinov, E.N., and Parmon, V.N., Kinet. Katal., 1987, vol. 28, no. 5, p. 1111.

    CAS  Google Scholar 

  9. Tsuji, I., Kato, H., Kobayashi, H., and Kudo, A., J. Am. Chem. Soc., 2004, vol. 126, no. 41, p. 13406.

    Article  CAS  Google Scholar 

  10. Xing, C.J., Zhang, Y.J., Yan, W., and Guo, L.J., Int. J. Hydrogen Energy, 2006, vol. 31, no. 14, p. 2018.

    Article  CAS  Google Scholar 

  11. Ren, L., Yang, F., Deng, Yu., Yan, N., Huang, Sh., Lei, D., Sun, Q., and Yu, Y., Int. J. Hydrogen Energy, 2010, vol. 35, no. 8, p. 3297.

    Article  CAS  Google Scholar 

  12. Zhu, J. and Zach, M., Curr. Opin. Colloid. Interface Sci., 2009, vol. 14, no. 4, p. 260.

    Article  CAS  Google Scholar 

  13. Chen, J., Lin, Sh., Yan, G., Yang, L., and Chen, X., Catal. Commun., 2008, vol. 9, no. 1, p. 65.

    Article  CAS  Google Scholar 

  14. Zhang, W. and Xu, R., Int. J. Hydrogen Energy, 2009, vol. 34, no. 20, p. 8495.

    Article  CAS  Google Scholar 

  15. Bao, N.Z., Shen, L.M., Takata, T., and Domen, K., Chem. Mater., 2008, vol. 20, no. 1, p. 110.

    Article  CAS  Google Scholar 

  16. Kozlova, E.A. and Vorontsov, A.V., Int. J. Hydrogen Energy, 2010, vol. 35, no. 14, p. 7337.

    Article  CAS  Google Scholar 

  17. Zhang, K., Jing, D., Xing, C., and Guo, L., Int. J. Hydrogen Energy, 2007, vol. 32, no. 18, p. 4685.

    Article  CAS  Google Scholar 

  18. Biswas, S., Kar, S., Santra, S., Jompol, Y., Arif, M., and Khondaker, S.I., J. Phys. Chem. C, 2009, vol. 113, no. 9, p. 3617.

    Article  CAS  Google Scholar 

  19. Xu, X., Lu, R., Zhao, X., Xu, S., Lei, X., Zhang, F., and Evans, D.G., Appl. Catal., B, 2011, vol. 102, nos. 1–2, p. 147.

    CAS  Google Scholar 

  20. Jing, D., Guo, L., Zhao, L., Zhang, X., Liu, H., Li, M., Shen, Sh., Liu, G., Hu, X., Zhang, X., Zhang, K., Ma, L., and Guo, P., Int. J. Hydrogen Energy, 2010, vol. 35, no. 13, p. 7087.

    Article  CAS  Google Scholar 

  21. Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., and Golberg, D., Prog. Mater. Sci., 2011, vol. 56, no. 2, p. 175.

    Article  CAS  Google Scholar 

  22. Wang, L., Wang, W., Shang, M., Yin, W., Sun, S., and Zhang, L., Int. J. Nydrogen Energy, 2010, vol. 35, no. 1, p. 19.

    Article  CAS  Google Scholar 

  23. Zhang, K., Jing, D., Liu, M., and Guo, L., Catal. Commun., 2008, vol. 9, no. 8, p. 1720.

    Article  CAS  Google Scholar 

  24. Zhang, K., Jing, D., and Guo, L., Int. J. Hydrogen Energy, 2010, vol. 35, no. 13, p. 7051.

    Article  CAS  Google Scholar 

  25. Zhang, K., Jing, D., Chen, Q., and Guo, L., Int. J. Hydrogen Energy, 2010, vol. 35, no. 5, p. 2048.

    Article  CAS  Google Scholar 

  26. Sabate, J., Cervera-March, S., Simmaro, R., and Gimenez, J., Chem. Eng. Sci., 1990, vol. 45, no. 10, p. 3089.

    Article  CAS  Google Scholar 

  27. Carp, O., Huisman, C.L., and Reller, A., Prog. Solid State Chem., 2004, vol. 32, nos. 1–2, p. 33.

    Article  CAS  Google Scholar 

  28. Sahu, N., Upadhyay, S.N., and Sinha, A.S.K., Int. J. Hydrogen Energy, 2009, vol. 34, no. 1, p. 130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kozlova.

Additional information

Original Russian Text © T.P. Lyubina, E.A. Kozlova, 2012, published in Kinetika i Kataliz, 2012, vol. 53, No. 2, pp. 197–205.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubina, T.P., Kozlova, E.A. New photocatalysts based on cadmium and zinc sulfides for hydrogen evolution from aqueous Na2S-Na2SO3 solutions under irradiation with visible light. Kinet Catal 53, 188–196 (2012). https://doi.org/10.1134/S0023158412020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158412020061

Keywords

Navigation