Skip to main content
Log in

Oxidation of 1,3-butadiene over Pd/C and Pd-Te/C catalysts in polar media

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The oxidation of 1,3-butadiene over the Pd/C and Pd-Te/C heterogeneous catalysts occurs in organic solvents containing water at a temperature of 100°C and an oxygen partial pressure of \(P_{\left[ {O_2 } \right]} = 4\) atm. Crotonaldehyde dominates among the three major products of oxidation over the Pd catalyst. The introduction of Te into the catalyst increases the methyl vinyl ketone yield, the furan yield being the lowest in all cases. X-ray photoelectron spectroscopy (XPS) showed that the active catalyst components can be in a partially oxidized state, particularly after storing the catalysts in air. Additional hydrogen treatment results in almost complete reduction of the active components to metals and enhances the catalytic activity. It is supposed that the oxidation of 1,3-butadiene over the Pd-Te catalysts proceeds via the activation of dioxygen over the Pd0 sites, with oxidized Pd and Te participating in subsequent chemical transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monnier, J.R., Appl. Catal., A, 2001, vol. 221, nos. 1–2, p. 73.

    CAS  Google Scholar 

  2. Centi, G. and Trifiro, F., J. Mol. Catal., 1986, vol. 35, no. 2, p. 255.

    Article  CAS  Google Scholar 

  3. Trifiro, F. and Jiru, P., Catal. Today, 1988, vol. 3, no. 3, p. 519.

    Article  CAS  Google Scholar 

  4. Schroeder, W.D., Fontenot, C.J., and Schrader, G.L., J. Catal., 2001, vol. 203, no. 2, p. 382.

    Article  CAS  Google Scholar 

  5. Hendry, D.G., Mayo, R.F., and Scheutzle, D., Ind. Eng. Chem. Res., 1968, vol. 7, no. 2, p. 136.

    Article  CAS  Google Scholar 

  6. German Patent 2232699, 1973.

  7. Handy, C.T. and Rothrock, H.S., J. Am. Chem. Soc., 1958, vol. 80.

  8. Alexander, D.S., Ind. Eng. Chem., 1959, vol. 51, no. 6, p. 733.

    Article  CAS  Google Scholar 

  9. Hotanahalli, S.S. and Chandalia, S.B., J. Appl. Chem., 1970, vol. 20, no. 10, p. 323.

    Article  CAS  Google Scholar 

  10. US Patent 4298531, 1981.

  11. Japanese Patent 04009776B, 1992.

  12. US Patent 4172838, 1979.

  13. US Patent 4323508, 1982.

  14. US Patent 3755432, 1973.

  15. US Patent 3922300, 1975.

  16. Takehira, K., Mimoun, H., and de Roch, I.S., J. Catal., 1979, vol. 58, no. 2, p. 155.

    Article  CAS  Google Scholar 

  17. Takehira, K., Ancel, J., Chena, T., Niwa, S., Hayakawa, T., and Ishikawa, T., J. Catal., 1982, vol. 76, no. 2, p. 354.

    Article  CAS  Google Scholar 

  18. US Patent 5159120, 1992.

  19. Witonska, I., Frajtak, M., and Karski, S., Appl. Catal., A, 2011, vol. 401, nos. 1–2, p. 73.

    CAS  Google Scholar 

  20. Hayashi, H., Sugiyama, S., Shigemoto, N., Miyaura, K., Tsujino, S., Kawashiro, K., and Uemura, S., Catal. Lett., 1993, vol. 19, no. 4, p. 369.

    Article  CAS  Google Scholar 

  21. Miyake, T. and Asakawa, T., Appl. Catal., A, 2005, vol. 280, no. 1, p. 47.

    Article  CAS  Google Scholar 

  22. Miyaji, A., Hamada, T., Kamiya, Y., Nakajo, T., and Okuhara, T., Catal. Lett., 2007, vol. 119, nos. 3–4, p. 252.

    Article  CAS  Google Scholar 

  23. US Patent Appl. 0090023952, 2009.

  24. Mallat, T. and Baiker, A., Appl. Catal., A, 1991, vol. 79, no. 1, p. 41.

    Article  CAS  Google Scholar 

  25. Sugiyama, S., Kikumoto, T., Tanaka, H., Nakagawa, K., Sotowa, K.-I., Maehara, K., Himeno, Y., and Ninomiya, W., Catal. Lett., 2009, vol. 131, nos. 1–2, p. 129.

    Article  CAS  Google Scholar 

  26. Sugiyama, S., Tanaka, H., Kikumoto, T., Nakagawa, K., Sotowa, K.-I., Maehara, K., and Ninomiya, W., J. Chem. Eng. Jpn., 2010, vol. 43, nos. 4–7, p. 514.

    Article  CAS  Google Scholar 

  27. Japanese Patent 2004217543, 2004.

  28. Cheng, C.H., Dooley, K.M., and Price, G.L., J. Catal., 1989, vol. 116, no. 2, p. 325.

    Article  CAS  Google Scholar 

  29. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy, Eden Prairie, Minn.: PerkinElmer, 1992.

    Google Scholar 

  30. Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Chichester: Wiley, 1983..

    Google Scholar 

  31. Pillo, Th., Zimmermann, R., Steiner, P., and Hufner, S., J. Phys.: Condens. Matter, 1997, vol. 9, p. 3987.

    Article  CAS  Google Scholar 

  32. Gogova, Z. and Hanika, J., Chem. Pap., 2009, vol. 63, no. 5, p. 520.

    Article  CAS  Google Scholar 

  33. Roussel, O. and Mimoun, H., J. Org. Chem. 1980, vol. 45, no. 26, p. 5387.

    Article  CAS  Google Scholar 

  34. Brink, G.-J., Arends, I.W.C.E., Papadogianakis, G., and Sheldon, R.A., Appl. Catal., A, 2000, vol. 194, no. 13, p. 435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Kuznetsova.

Additional information

Original Russian Text © D.V. Trebushat, N.I. Kuznetsova, S.V. Koshcheev, L.I. Kuznetsova, 2013, published in Kinetika i Kataliz, 2013, Vol. 54, No. 2, pp. 243–252.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trebushat, D.V., Kuznetsova, N.I., Koshcheev, S.V. et al. Oxidation of 1,3-butadiene over Pd/C and Pd-Te/C catalysts in polar media. Kinet Catal 54, 233–242 (2013). https://doi.org/10.1134/S0023158413020158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158413020158

Keywords

Navigation