Skip to main content
Log in

Catalytic Etching of Platinoid Gauzes during the Oxidation of Ammonia by Air: Etching of the Frontal Surface of the Platinoid Gauze in the Course of NH3 Oxidation at 1133 K

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The morphology, microstructure, and chemical composition of the surface and near-surface layers of polycrystalline wire of an industrial platinoid gauze composed of Pt (81 wt %), Pd (15 wt %), Rh (3.5 wt %), and Ru (0.5 wt %) are investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy. After oxidizing NH3 with air at T = 1133 K under a pressure of 3.6 bar for 50 h, a continuous rough layer of the cauliflower-type agglomerates formed during catalytic etching is detected on the frontal surface of the gauze. On the surface of wire fragments from 100 to 150 μm in size with a smooth micrograined structure, nanometer-size etch pits are detected at a concentration of 1.0 × 108–6.0 × 108 cm–2, which may be etching sites of the hotspot type. The growth of etch pits and the formation of crystalline terraces on the grain surface are caused by the surface diffusion of metal atoms. The continuous etching layer contains porous crystalline agglomerates (cauliflowers) with a linear size of 3 to 18 μm (mean size about 10 μm) at a concentration of 4.9 × 105 cm–2. Pores with a diameter of 0.1 to 1.7 μm are detected on the surface of agglomerates at a concentration of 1.3 × 107 cm–2. The specific surface area of the platinoid gauze, which is calculated from microscopic images taking into account the surface area of agglomerates and pores, is about 260 cm2/g. In the process of highly exothermic oxidation of NH3 with oxygen, on the surface of agglomerates with a low concentration of defects and in pore voids 5–15 μm in width and up to 10 μm in depth with an increased specific surface area and a high concentration of defects, vapor of volatile oxides and metals that are formed at hot regions of the bottom of pore voids can be condensed on the overlaying cold regions of the surface of agglomerates and single crystals. These processes give rise to the formation of a continuous etching layer of porous crystalline agglomerates, massive single crystals, and deep pore voids. The formed etching layer substantially increases the specific surface area of the catalyst, which leads to an increase in the volumetric rate of NH3 oxidation that accelerates the etching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Satterfield, C.N., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980, p. 416.

    Google Scholar 

  2. Lloyd, L., Handbook of Industrial Catalysis, New York: Springer, 2011, p. 119.

    Book  Google Scholar 

  3. Kuhlmann, F., Justus Leibigs Ann. Chem., 1839, vol. 29, no. 3, p. 272.

    Google Scholar 

  4. DE Patent 271517, 1909.

  5. Parsons, C.L., J. Ind. Eng. Chem., 1919, vol. 11, p. 541.

    Article  CAS  Google Scholar 

  6. Rideal, E.K. and Taylor, H.S., Catalysis in Theory and Practice, London: Macmillan, 1926, 2nd ed., p. 176.

    Google Scholar 

  7. Roginskii, S.Z., Tret’yakov, I.I., and Shekhter, A.B., Zh. Fiz. Khim., 1949, no. 10, p. 1152.

  8. Roginskii, S.Z., Tret’yakov, I.I., and Shekhter, A.B., Dokl. Akad. Nauk SSSR, 1953, vol. 91, p. 881.

    CAS  Google Scholar 

  9. Garton, G. and Turkevich, J., J. Chim. Phys., 1954, vol. 51, p. 516.

    Article  CAS  Google Scholar 

  10. Hannevold, L., Nilsen, O., Kjekshus, A., and Fjellvag, H., J. Alloy. Compd., 2005, vol. 402, p. 53.

    Article  CAS  Google Scholar 

  11. Hannevold, L., Nilsen, O., Kjekshus, A., and Fjellvag, H., J. Crystal Growth, 2005, vol. 279, p. 206.

    Article  CAS  Google Scholar 

  12. Barelko, V.V., Volodin, Yu.E., Khal’zov, P.I., and Doronin, V.N., Dokl. Akad. Nauk SSSR, 1976, vol. 231, no. 5, p. 1143.

    CAS  Google Scholar 

  13. Barelko, V.V. and Khal’zov, P.I., Poverkhnost’, 1982, no. 6, p. 91.

  14. Lyubovsky, M.R. and Barelko, V.V., J. Catal., 1994, vol. 149, p. 23.

    Article  CAS  Google Scholar 

  15. Lyubovskii, M.R. and Barelko, V.V., Kinet. Katal., 1994, vol. 35, no. 3, p. 412.

    Google Scholar 

  16. Kraehnert, R. and Baers, M., Appl. Catal., A, 2007, vol. 327, p. 73.

  17. Kraehnert, R., Cand. Sci. Dissertation, Berlin: Det Technischen Universitat Berlin, 2005.

  18. McCabe, R.W., Pignet, T., and Schmidt, L.D., J. Catal., 1974, vol. 32, p. 114.

    Article  CAS  Google Scholar 

  19. Nilsen, O., Kjekshus, A., and Fjellvag, H., Appl. Catal., A, 2001, vol. 207, p. 43.

  20. Hannevold, L., Nilsen, O., Kjekshus, A., and Fjellvag, H., Appl. Catal., A, 2005, vol. 284, p. 163.

  21. Hannevold, L., Nilsen, O., Kjekshus, A., and Fjellvag, H., Appl. Catal., A, 2005, vol. 284, p. 185.

  22. Hannevold, L., Nilsen, O., Kjekshus, A., and Fjellvag, H., Appl. Catal., A, 2005, vol. 284, p. 177.

  23. Patent RU 1807608, 1995.

  24. Isupova, L.A., Katal. Prom-sti, 2012, no. 6, p. 52.

  25. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J., Scanning Electron Microscopy and X-Ray Microanalysis, New York: Springer, 2003, p. 61.

    Book  Google Scholar 

  26. Salanov, A.N., Suprun, E.A., Serkova, A.N., Sidel’nikova, O.N., Sutormina, E.F., Isupova, L.A., Kalinkin, A.V., and Parmon, V.N., Kinet. Catal., 2018, vol. 59, no. 1, p. 83.

    Article  CAS  Google Scholar 

  27. Salanov, A.N., Suprun, E.A., Serkova, A.N., Kochurova, N.M., Sidel’nikova, O.N., Sutormina, E.F., Isupova, L.A., Kalinkin, A.V., and Parmon, V.N., Kinet. Catal., 2018, vol. 59, no. 6, p. 792.

    Article  CAS  Google Scholar 

  28. Vasina, S.Ya., Brushtein, E.A., Petrii, O.A., Lazaricheva, I.V., and Perov, V.M., Khim. Prom-st, 1992, no. 10, p. 30.

  29. Novikov, I.I., Defekty kristallicheskogo stroeniya metallov (Defects of Crystalline Structure of Metals), Moscow: Metallurgiya, 1975, p. 208.

  30. Bergene, E., Tronstad, O., and Holmen, A., J. Catal., 1996, vol. 160, p. 141.

    Article  CAS  Google Scholar 

  31. Darling, A.S., Platinum Met. Rev., 1964, vol. 8, no. 4, p. 134.

    CAS  Google Scholar 

  32. Alcock, C.B. and Hooper, G.W., Proc. R. Soc., 1960, vol. 254, no. 1279, p. 551.

  33. Olivei, A., J. Less-Common Met., 1972, vol. 29, issue 1, p. 11.

    Article  CAS  Google Scholar 

  34. Sadykov, V.A., Brushtein, E.A., Isupova, L.A., Telyatnikova, T.V., Kirchanov, A.A., Zolotarskii, I.A., Noskov, A.S., Kozhevnikova, N.G., Kruglyakov, V.Yu., Snegurenko, O.I., Gibbadulin, Yu.N., and Khazanov, A.A., Khim. Prom-st., 1997, no. 12, p. 819.

Download references

Funding

This study was performed within the framework of State assignment of the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project AAAA-A17-117041710079-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Salanov.

Additional information

Translated by O. Kadkin

Abbreviations: BE, backscattered electrons; CVT mechanism, chemical vapor transport mechanism; EDX, energy dispersive X-ray spectroscopy; SEM, scanning electron microscopy; SE, secondary electrons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salanov, A.N., Suprun, E.A., Serkova, A.N. et al. Catalytic Etching of Platinoid Gauzes during the Oxidation of Ammonia by Air: Etching of the Frontal Surface of the Platinoid Gauze in the Course of NH3 Oxidation at 1133 K. Kinet Catal 61, 421–443 (2020). https://doi.org/10.1134/S0023158420030179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420030179

Keywords:

Navigation