Skip to main content
Log in

Complexes of telomeric oligonucleotide d(TTAGGG)4 with the new recombinant protein vector PGEk carrying nucleic acids into proliferating cells

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A study was made of the complexation of the protein vector PGEk, which transfers nucleic acids into the nuclei of cancer cells, with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) oligonucleotides, which inhibit telomerase. PGEk (64 amino-acid residues) contains a hydrophobic domain that originates from the human epidermal growth factor (hEGF) and is responsible for the receptor-mediated transfer of PGEk across the cell membrane, and the hydrophilic domain, which is a nuclear localization signal (NLS) and serves to bind DNA and deliver it to the cell nucleus. Experiments were performed in 0.01-M Na-phosphate and 0.1-M NaCl at 37°C. An analysis of the circular dichroism (CD) spectra showed that TMO forms an antiparallel G-quadruplex, while TMS occurs in the form of unfolded strands. The number of PGEk molecules adsorbed on oligonucleotides was estimated from the quenching of PGEk fluorescence and the increase in its polarization upon titration with oligonucleotides. Adsorption isotherms were plotted in Scatchard coordinates. Adsorption of the first two PGEk molecules on TMO and TMS followed a noncooperative mechanism and was characterized by high association constants: K 1(TMO) = (7 ± 1) · 107 M−1 and K 1(TMS) = (3 (± 0.5) · 107 M−1. Further adsorption, up to five or six PGEk molecules per TMO molecule, showed high cooperation and K 2(TMO) = (4.0 ± 1.5) · 106 M−1. Unlike TMO, TMS only weakly bound the third PGEk molecule: K 2(TMS) = (8 ± 2) · 105 M−1. An analysis of the CD spectra showed that PGEk partly unfolded the G-quadruplex formed by TMO and did not have an effect on the single-stranded structure of TMS. The secondary structure of DNA and the number of protein subunits were established for the biologically active complexes PGEk-TMO and PGEk-TMS, which efficiently pass across the membrane of cancer cells and inhibit their proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simonsson T. 2001. G-quadruplex DNA structure: Variations on a theme. Biol. Chem. 382, 621–628.

    Article  PubMed  CAS  Google Scholar 

  2. Schaffitzel C., Berger I., Postberg J., Hanes J., Zipps H.J., Pruckthan A. 2001. In vivo generated antibodies specific for telomeric guanine—quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. USA. 98, 8572–8577.

    Article  PubMed  CAS  Google Scholar 

  3. Paeschke K., Simonsson T., Postberg J., Rhodes D., Lipps H.J. 2005. Telomere end binding protein control the formation of G-quadruplex DNA structures in vivo. Nature Struct. Mol. Biol. 12, 847–854.

    Article  CAS  Google Scholar 

  4. Siddiqui-Jain A., Grand C.L., Bearss D.J., Harley L.H. 2002. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress cMyc transcription. Proc. Natl. Acad. Sci. USA. 99, 11593–11598.

    Article  PubMed  CAS  Google Scholar 

  5. Usdin K. 1998. NGG-triplet repeats form similar intrastrand structures: Implications for the triplet expansion diseases. Nucleic Acids Res. 26, 1167–1172.

    Article  Google Scholar 

  6. Wright W.E., Tesmer W.M., Huffman K.E., Levene S.D., Shay J.W. 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809.

    PubMed  CAS  Google Scholar 

  7. Blackburn E.H. 1991. Structure and function of telomeres. Nature. 350, 569–573

    Article  PubMed  CAS  Google Scholar 

  8. Blackburn E.H. 1992. Telomerases. Annu. Rev. Biochem. 61, 113–129.

    Article  PubMed  CAS  Google Scholar 

  9. Mc Eachern M.J., Krauskopf A., Blackburn E.H. 2000. Telomeres and their control. Annu. Rev. Genet. 34, 331–358.

    Article  CAS  Google Scholar 

  10. Blackburn E.H. 2001. Switching and signaling at the telomere. Cell. 106, 661–673.

    Article  PubMed  CAS  Google Scholar 

  11. Zakian V.A. 1995. Telomeres beginning to understand the end. Science. 270, 1601–1607.

    PubMed  CAS  Google Scholar 

  12. Makarov V.L., Hirose Y., Langmore J.P. 1997. Long G-tails at both ends of human chromosomes suggest a C-strand degradation mechanism for telomere shortening. Cell. 88, 657–666.

    Article  PubMed  CAS  Google Scholar 

  13. Wright W.E., Tesmer V.M., Huffman K.E., Zavene S.D., Shay J.W. 1997. Normal human chromosomes have a long a rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809.

    PubMed  CAS  Google Scholar 

  14. De Lange T. 2002. Protection of mammalian telomeres. Oncogene. 21, 532–540.

    Article  PubMed  Google Scholar 

  15. Harley C.B., Futcher A.B., Greider C.W. 1990. Telomeres shorten during ageing of human fibroblasts. Nature. 345, 458–460.

    Article  PubMed  CAS  Google Scholar 

  16. Greider C.W. 1998. Telomerase activity, cell proliferation, and cancer. Proc. Natl. Acad. Sci. USA. 95, 90–92.

    Article  PubMed  CAS  Google Scholar 

  17. Han H., Harley L.H. 2000. G-quadruplex DNA: A potential target for anti-cancer drug design. TiPS. 21, 136–141.

    PubMed  CAS  Google Scholar 

  18. Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L.C., Coviello G.H., Wright W.E., Weinrich S.L., Shay J.W. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science. 266, 2011–2015.

    PubMed  CAS  Google Scholar 

  19. Simonsson T. 2001. G-quadruplex DNA structure: Variations on a theme. Biol. Chem. 382, 621–628.

    Article  PubMed  CAS  Google Scholar 

  20. Williamson J.R. 1994. G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 703–730.

    Article  PubMed  CAS  Google Scholar 

  21. Neidle S., Read M.A. 2001. G-quadruplex as therapeutic targets. Biopolymers. 56, 195–208.

    Article  CAS  Google Scholar 

  22. Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. 1991. Inhibition of telomerase by G-quartet structures. Nature. 350, 718–720.

    Article  PubMed  CAS  Google Scholar 

  23. Sun D., et al. 1997. Inhibition of human telomerases by G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116.

    Article  PubMed  CAS  Google Scholar 

  24. Neidle S., Parkinson G.N. 2003. The structure of telomeric DNA. Curr. Opin. Struct. Biol. 13, 275–283.

    Article  PubMed  CAS  Google Scholar 

  25. Shiraishi T., Hamzavi R., Nielsen P.E. 2005. Targeting delivery of plasmid DNA into the nucleus of cell via nuclear localization signal peptide conjugate to DNA Intercalating bis-and trisacridines. Bioconjugate Chem. 16, 1112–1116.

    Article  CAS  Google Scholar 

  26. Felgner P.L., et al. 1987. Lipofection: A highly efficient lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA. 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  27. Morris M.C., Vidal P., Chaloin L., Heitz F., Divita G. 1997. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25, 2730–2736.

    Article  PubMed  CAS  Google Scholar 

  28. Pozmogova G.E., Chuvilin A.N., Posypanova G.N., Shulga A.A., Ermolyuk Yu.S., Kireeva N.N., Kirpichnikov M.P., Skryabin K.S. 2001. New EGF—based peptide vectors for antisence oligonucleotides and plasmid DNA target delivery into actively proliferating cells. Proc. Int. Conf. RNA As Therapeutics and Genomics Target. Novosibirsk, p. 83.

  29. Richardson P.D., Crein B.T., Steer C.J. 2002. Gene repair in the new age of gene therapy. Hepatology. 35, 512–518.

    Article  PubMed  CAS  Google Scholar 

  30. Zubin E.M., Romaniva E.A., Orteskaya T.S. 2002. Modern methods of oligonucleotidepeptide synthesis. Usp. Khim. 71, 273–301.

    Google Scholar 

  31. Pozmogova G.E., Chuvilin A.N., Posypanova G.A., Shulga A.A., Eldarov M.A., Ermolyuk Ya.S., Severin E.S., Kirpichnikov M.P., Skryabin K.G. 2004. RF Patent no. 2248983.

  32. Sosnowski B.A., Gonzalez A.N., Buechler Y.J., Pierse G.F., Baird A. 1996. Targeting DNA to cells with basic fibroblast growth factor (FGF2). J. Biol. Chem. 271, 33647–33653.

    Article  PubMed  CAS  Google Scholar 

  33. Wels W., Moritz D., Schmidt M., Jeschke H., Hynes N.E., Groner B. 1995. Biotechnological and gene therapeutical strategies in cancer treatment. Gene. 159, 73–80.

    Article  PubMed  CAS  Google Scholar 

  34. Cristiano R.J., Roth J.A. 1996. Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor. Cancer Gene Ther. 3, 4–10.

    PubMed  CAS  Google Scholar 

  35. Frederiksen K.S., Abrahamsen N., Cristiano R.J., Damstrup L., Poulsen H.S. 2000. Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor. Cancer Gene Ther. 7, 262–268.

    Article  PubMed  CAS  Google Scholar 

  36. Shchyolkina A.K., Borisova O.F., Livshits M.A., Pozmogova G.E., Chernov B.K., Klement R., Jovin T.M. 2000. Parallel-stranded DNA with mixed AT/GC composition: Role of trans-GC base pairs in sequence dependent helical stability. Biochemistry. 39, 10034–10044.

    Article  PubMed  CAS  Google Scholar 

  37. Besschetnova I.A., Pozmogova G.E., Shchyolkina A.K., Borisova O.F. 2005. The effect of the secondary and tertiary structure of d(TTAGGG)4 telomeric oligonucleotides on their binding with novel recombinant protein PGEk: Deliver of DNA in cell. J. Biomol. Struct. Dynam. 22, 859–860.

    Google Scholar 

  38. Balagurumoorthy P., Brahmachari S.K. 1994. Structure and stability of human telomeric sequence. J. Biol. Chem. 269, 12858–12869.

    Google Scholar 

  39. Cantor C.R., Schimmel P.R. 1980. Biophysical Chemistry. San Francisco: W.H. Freeman.

    Google Scholar 

  40. Glukhov A.I., Zimnik O.V., Gordeev S.A., Severin S.E. 1998. Inhibition of telomerase activity of melanoma cells in vitro by antisence oligonucleotides. Biochem. Biophys. Res. Commun. 248, 368–371.

    Article  PubMed  CAS  Google Scholar 

  41. Herbert B., Pitts A.E., Baker S.I., Hamilton S.E., Wright W.E., Shay J.W., Corey D.E. 1999. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA. 96, 14276–14281.

    Article  PubMed  CAS  Google Scholar 

  42. Harley C.B. 2002. Telomerase is not an oncogene. Oncogene. 21, 494–502.

    Article  PubMed  CAS  Google Scholar 

  43. Balagurumoorthy P., Brahmachari S., Mohanty D., Bansal M., Sasisekharan V. 1992. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 20, 4061–4067.

    PubMed  CAS  Google Scholar 

  44. Miyoshi D., Nakao A., Toda T., Sugimoto N. 2001. Effect of divalent cations on antiparallel G-quartet structure of d(G4T4G4). FEBS Lett. 496, 128–131.

    Article  PubMed  CAS  Google Scholar 

  45. Clark Ch.L., Cecil P.K., Singh D., Gray D.M. 1997. CD, adsorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)12[d/r(GT/U)]12 and the influence of phophorothioate substitution. Nucleic Acid Res. 25, 4098–4105.

    Article  PubMed  CAS  Google Scholar 

  46. Burstein E.A., Vedenkina N.S., Ivkova M.N. 1974. Fluorescence and the localization of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263–279.

    Google Scholar 

  47. Chen Y., Barkley M.D. 1998. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 37, 9976–9982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Besschetnova, G.E. Pozmogova, A.N. Chuvilin, A.K. Shchyolkina, O.F. Borisova, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 3, pp. 489–496.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besschetnova, I.A., Pozmogova, G.E., Chuvilin, A.N. et al. Complexes of telomeric oligonucleotide d(TTAGGG)4 with the new recombinant protein vector PGEk carrying nucleic acids into proliferating cells. Mol Biol 40, 433–439 (2006). https://doi.org/10.1134/S0026893306030101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306030101

Key words

Navigation