Skip to main content
Log in

The modification and variants of histone

  • To the 40th Anniversary of Molekulyarnaya Biologiya
  • Chromatin. Chromosomes. Transcription
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The modification of histone plays a crucial role in regulating chromatin states that conserve transcription programs and provide a mechanism for chromatin states to be maintained as cells proliferate. A large number of factors and protein complexes are now known to be involved in regulating the dynamic states of the modification and variants of histone. A fraction of histones are nonallelic variants that have a specific expression, localization, and species-distribution patterns. Here we discuss recent progress in understanding how histone variants lead to changes in chromatin structure and dynamics to carry out specific functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robert J.S., Nishioka K., Reinberg D. 2003. Histone lysine methylation: A signature for chromatin function. Trends Genet. 19, 629–639.

    Article  CAS  Google Scholar 

  2. Mario F., Ballestar E., Villar-Garea A., et al. 2005. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400.

    Article  CAS  Google Scholar 

  3. Jürgen C.B., Selma U., Eva-Bettina B., David S., Roland H. 2006. New therapeutic approaches for solid tumors: Histone deacetylase, methyltransferase and proteasome inhibitors. J. Dtsch. Dermatol. Ges. 4, 108–115.

    Article  Google Scholar 

  4. Turner B.M., Birley A.J., Lavender J. 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 69, 375–384.

    Article  PubMed  CAS  Google Scholar 

  5. Strahl B.D., Allis C.D. 2000. The language of covalent histone modifications. Nature. 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  6. Old R.W., Woodland H.R. 1984. Histone genes: Not so simple after all. Cell. 38, 624–626.

    Article  PubMed  CAS  Google Scholar 

  7. Brandt W.F., Strickland W.N., Strickland M., Carlisle L., Woods D., von Holt C. 1979. A histone programme during the life cycle of the sea urchin. Eur. J. Biol. Chem. 94, 1–10.

    CAS  Google Scholar 

  8. Bosch A., Suau P. 1995. Changes in core histone variant composition in differentiating neurons: The roles of differential turnover and synthesis rates. Eur. J. Cell Biol. 68, 220–225.

    PubMed  CAS  Google Scholar 

  9. Pina B., Suau P. 1987. Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev. Biol. 123, 51–58.

    Article  PubMed  CAS  Google Scholar 

  10. Jenuwein T., Allis C.D. 2001. Translating the histone code. Science. 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  11. Turner B.M. 2002. Cellular memory and the histone code. Cell. 111, 285–291.

    Article  PubMed  CAS  Google Scholar 

  12. Vidanes G.M., Bonilla C.Y., Toczyski D.P. 2005. Complicated tails: Histone modifications and the DNA damage response. Cell. 121, 973–976.

    Article  PubMed  CAS  Google Scholar 

  13. Heard E., Rougeulle C., Arnaud D., Avner P., Allis C.D., Spector D.L. 2005. Methylation of histone H3 at Lys9 is an early mark on the X chromosome during X inactivation. Cell. 107, 727–738.

    Article  Google Scholar 

  14. Peters A.H., Mermoud J.E., O’Carroll D., Pagani M., Schweizer D., Brockdorff N., Jenuwein T. 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nature Genet. 30, 77–80.

    Article  PubMed  CAS  Google Scholar 

  15. Plath K., Fang J., Mlynarczyk-Evans S.K., Cao R., Worringer K.A., Wang H., de la Cruz C.C., Otte A.P., Panning B., Zhang Y. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science. 300, 131–135.

    Article  PubMed  CAS  Google Scholar 

  16. Czermin B., Melfi R., McCabe D., Seitz V., Imhof A., Pirrotta V. 2002. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 111, 185–196.

    Article  PubMed  CAS  Google Scholar 

  17. Ayyanathan K., Lechner M.S., Bell P., Maul G.G., Schultz D.C., Yamada Y., Tanaka K., Torigoe K., Rauscher F.J. III. 2003. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855–1869.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson C.A., O’Neill L.P., Mitchell A., Turner B.M. 1998. Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both heterochromatic and euchromatic regions of the human genome. Nucleic Acids Res. 26, 994–1001.

    Article  PubMed  CAS  Google Scholar 

  19. Nishioka K., Chuikov S., Sarma K., Erdjument-Bromage H., Allis C.D., Tempst P., Reinberg D. 2002. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489.

    Article  PubMed  CAS  Google Scholar 

  20. Ng H.H., Robertm F., Young R.A., Struhl K. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell. 11, 709–719.

    Article  PubMed  CAS  Google Scholar 

  21. Hampsey M., Reinberg D. 2003. Tails of Intrigue. Phosphorylation of RNA polymerase II mediates histone methylation. Cell. 113, 429–432.

    Article  PubMed  CAS  Google Scholar 

  22. Santos-Rosa H., Schneider R., Bannister A.J., Sherriff J., Bernstein B.E., Emre N.C., Schreiber S.L., Mellor J., Kouzarides T. 2002. Active genes are trimethylated at K4 of histone H3. Nature. 419, 407–411.

    Article  PubMed  CAS  Google Scholar 

  23. Li J., Moazed D., Gygi S.P. 2002. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277, 49383–49388.

    Article  PubMed  CAS  Google Scholar 

  24. Im H., Park C., Feng Q., Johnson K.D., Kiekhaefer C.M., Choi K., Zhang Y., Bresnick E.H. 2003. Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain. J. Biol. Chem. 278, 18346–18352.

    Article  PubMed  CAS  Google Scholar 

  25. Shogren-Knaak M., Ishii H., Sun J.M., Pazin M.J., Davie J.R., Peterson C.L. 2006. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 311, 844–847.

    Article  PubMed  CAS  Google Scholar 

  26. Studitsky V.M., Kassavetis G.A., Geiduschek E.P., Felsenfeld G. 1997. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science. 278, 1960–1963.

    Article  PubMed  CAS  Google Scholar 

  27. Protacio R.U., Li G., Lowary P.T., Widom J. 2000. Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol. Cell. Biol. 20, 8866–8878.

    Article  PubMed  CAS  Google Scholar 

  28. John S., Howe L., Tafrov S.T., Grant P.A., Sternglanz R., Workman J.L. 2000. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 14, 1196–1208.

    PubMed  CAS  Google Scholar 

  29. Wittschieben B.O., Otero G., de Bizemont T., Fellows J., Erdjument-Bromage H., Ohba R., Li Y., Allis C.D., Tempst P., Svejstrup J.Q. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell. 4, 123–128.

    Article  PubMed  CAS  Google Scholar 

  30. Struhl K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606.

    PubMed  CAS  Google Scholar 

  31. Anderson J.D., Lowary P.T., Widom J. 2001. Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 307, 977–985.

    Article  PubMed  CAS  Google Scholar 

  32. Krajewsk W.A., Becker P.B. 1998. Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc. Natl. Acad. Sci. USA. 95, 1540–1545.

    Article  Google Scholar 

  33. Wang X., Moore S.C., Laszckzak M., Ausio J. 2000. Acetylation increases the helical content of the histone tails of the nucleosome. J. Biol. Chem. 275, 35013–35020.

    Article  PubMed  CAS  Google Scholar 

  34. Eberharter A., Becker P.B. 2002. Histone acetylation: A switch between repressive and permissive chromatin. EMBO Rep. 31, 224–229.

    Article  Google Scholar 

  35. Xu F., Zhang K.L., Grunstein M. 2005. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell. 121, 375–385.

    Article  PubMed  CAS  Google Scholar 

  36. DeLange R.J., Smith E.L. 1971. Histones: Structure and function. Annu. Rev. Biochem. 40, 279–314.

    Article  PubMed  CAS  Google Scholar 

  37. Bertos N.R., Wang A.H., Yang X.J. 2001. Class II histone deacetylases: Structure, function, and regulation. Biochem. Cell Biol. 79, 243–252.

    Article  PubMed  CAS  Google Scholar 

  38. Ridgway P., Almouzni G. 2001. Chromatin assembly and organization. J. Cell Sci. 114, 2711–2712.

    PubMed  CAS  Google Scholar 

  39. Waterborg J.H. 2002. Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem. Cell Biol. 80, 363–378.

    Article  PubMed  CAS  Google Scholar 

  40. Yang X.J., Ogryzko V.V., Nishikawa J., Howard B.H., Nakatani Y. 1996. A p300/CBP associated factor that competes with the adenoviral oncoprotein E1A. Nature. 382, 319–324.

    Article  PubMed  CAS  Google Scholar 

  41. Loprevite M., Tiseo M., Grossi F., Scolaro T., Semino C., Pandolfi A., Favoni R., Ardizzoni A. 2005. In vitro study of CI-994, a histone deacetylase inhibitor, in nonsmall cell lung cancer cell lines. Oncol. Res. 15, 39–48.

    PubMed  CAS  Google Scholar 

  42. Waterborg J.H., Matthews H.R. 1983. Intranuclear localization of histone acetylation in Physarum polycephalum and the structure of functionally active chromatin. Cell Biophys. 5, 265–279.

    PubMed  CAS  Google Scholar 

  43. Ip Y.T., Jackson V., Meier J., Chalkley R. 1988. The separation of transcriptionally engaged genes. J. Biol. Chem. 263, 14044–14052.

    PubMed  CAS  Google Scholar 

  44. Kruhlak M.J., Hendzel M.J., Fischle W., Bertos N.R., Hameed S., Yang X.J., Verdin E., Bazett-Jones D.P. 2001. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319.

    PubMed  CAS  Google Scholar 

  45. Hebbes T.R., Clayton A.L., Thorne A.W., Crane-Robinson C. 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830.

    PubMed  CAS  Google Scholar 

  46. Forsberg E.C., Downs K.M., Christensen H.M., Im H., Nuzzi P.A., Bresnick E.H. 2000. Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc. Natl. Acad. Sci. USA. 97, 14494–14499.

    Article  PubMed  CAS  Google Scholar 

  47. Gurley L.R., D’Anna J.A., Barham S.S., et al. 1978. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem. 84, 1–15.

    Article  PubMed  CAS  Google Scholar 

  48. Madigan J.P., Chotkowski H.L., Glaser R.L. 2002. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 30, 3698–3705.

    Article  PubMed  CAS  Google Scholar 

  49. Shroff R., Arbel-Eden A., Pilch D.R., Ira G., Bonner W.M., Petrini J.H., Haber J.E., Lichten M. 2004. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711.

    Article  PubMed  CAS  Google Scholar 

  50. Durocher D., Jackson S.P. 2001. DNA-PK, ATM and ATR as sensors of DNA damage: Variations on a theme? Curr. Opin. Cell Biol. 13, 225–231.

    Article  PubMed  CAS  Google Scholar 

  51. Redon C., Pilch D.R., Rogakou E., Orr A.H., Lowndes N.F., Bonner W.M. 2003. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. 4, 678–684.

    Article  PubMed  CAS  Google Scholar 

  52. Goldknopf I.L., Taylor C.W., Baum R.M., Yeoman L.C., Olson M.O., Prestayko A.W., Busch H. 1975. Isolation and characterization of protein A24, a “histone-like” nonhistone chromosomal protein. J. Biol. Chem. 250, 7182–7187.

    PubMed  CAS  Google Scholar 

  53. Nickel B.E., Davie J.R. 1989. Structure of polyubiquitinated histone H2A. Biochemistry. 28, 964–968.

    Article  PubMed  CAS  Google Scholar 

  54. West M.H., Bonner W.M. 1980. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 8, 4671–4680.

    Article  PubMed  CAS  Google Scholar 

  55. Conaway R.C., Brower C.S., Conaway J.W. 2002. Emerging roles of ubiquitin in transcription regulation. Science. 296, 1254–1258.

    Article  PubMed  CAS  Google Scholar 

  56. Levinger L., Varshavsky A. 1982. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell. 28, 375–385.

    Article  PubMed  CAS  Google Scholar 

  57. Davie J.R., Murphy L.C. 1990. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry. 29, 4752–4757.

    Article  PubMed  CAS  Google Scholar 

  58. Huang S.Y., Barnard M.B., Xu M., Matsui S., Rose S.M., Garrard W.T. 1986. The active immunoglobulin κ-chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc. Natl. Acad. Sci. 83, 3738–3742.

    Article  PubMed  CAS  Google Scholar 

  59. Parlow M.H., Haas A.L., Lough J. 1990. Enrichment of ubiquitinated histone H2A in a low salt extract of micrococcal nuclease-digested myotube nuclei. J. Biol. Chem. 265, 7507–7512.

    PubMed  CAS  Google Scholar 

  60. Dawson B.A., Herman T., Haas A.L., Lough J. 1991. Affinity isolation of active murine erythroleukemia cell chromatin: Uniform distribution of ubiquitinated histone H2A between active and inactive fractions. J. Cell. Biochem. 46, 166–173.

    Article  PubMed  CAS  Google Scholar 

  61. Baarends W.M., Hoogerbrugge J.W., Roest H.P., Ooms M., Vreeburg J., Hoeijmakers J.H., Grootegoed J.A. 1999. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol. 207, 322–333.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Y. 2003. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev. 17, 2733–2740.

    Article  PubMed  CAS  Google Scholar 

  63. Osley M.A. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861.

    Article  PubMed  CAS  Google Scholar 

  64. Cole R.D. 1987. Microheterogeneity in H1 histones and its consequences. Int. J. Pept. Protein Res. 30, 433–449.

    Article  PubMed  CAS  Google Scholar 

  65. Roche J., Gorka C., Goeltz P., Lawrence J.J. 1985. Association of histone H1(0) with a gene repressed during liver development. Nature. 314, 197–198.

    Article  PubMed  CAS  Google Scholar 

  66. Dou Y., Mizzen C.A., Abrams M., Allis C.D., Gorovsky M.A. 1999. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell. 4, 641–647.

    Article  PubMed  CAS  Google Scholar 

  67. Buttinelli M., Panetta G., Rhodes D., Travers A. 1999. The role of histone H1 in chromatin condensation and transcriptional repression. Genetica. 106, 117–124.

    Article  PubMed  CAS  Google Scholar 

  68. Wagner T.E., Hartford J.B., Serra M., Vandegrift V., Sung M.T. 1977. Phosphorylation and dephosphorylation of histone (V (H5): Controlled condensation of avian erythrocyte chromatin. Appendix: Phosphorylation and dephosphorylation of histone H5: 2. Circular dichroic studies. Biochemistry. 16, 286–290.

    Article  PubMed  CAS  Google Scholar 

  69. Paranjape S.M., Kamakaka R.T., Kadonaga J.T. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biol. Chem. 63, 265–297.

    CAS  Google Scholar 

  70. Steinbach O.C., Wolffe A.P., Rupp R.A. 1997. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature. 389, 395–399.

    Article  PubMed  CAS  Google Scholar 

  71. Redon C., Pilch D.R., Rogakou E., Sedelnikova O., Newrock K., Bonner W. 2002. Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 12, 162–169.

    Article  PubMed  CAS  Google Scholar 

  72. Jackson J. D., Falciano V.T., Gorovsky M.A. 1996. A likely histone H2A.F/Z variant in Saccharomyces cerevisiae. Trends Biochem. Sci. 21, 466–467.

    Article  PubMed  CAS  Google Scholar 

  73. Pehrson J.R., Fuji R.N. 1998. Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res. 26, 2837–2842.

    Article  PubMed  CAS  Google Scholar 

  74. Chadwick B.P., Willard H.F. 2001. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J. Cell Biol. 152, 375–384.

    Article  PubMed  CAS  Google Scholar 

  75. Costanzi C., Pehrson J.R. 1998. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature. 393, 599–601.

    Article  PubMed  CAS  Google Scholar 

  76. Malik H.S., Henikoff S. 2003. Phylogenomics of the nucleosome. Nature Struct. Biol. 10, 882–891.

    Article  PubMed  CAS  Google Scholar 

  77. Ren Q., Gorovsky M.A. 2001. Histone H2A.Z acetylation modulates an essential charge patch. Mol. Cell. 7, 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  78. Kamakaka R.T., Biggins S. 2005. Histone variants: Deviants? Genes Dev. 19, 295–310.

    Article  PubMed  CAS  Google Scholar 

  79. Bao Y., Konesky K., Park Y.J., Rosu S., Dyer P.N., Rangasamy D., Tremethick D.J., Laybourn P.J., Luger K. 2004. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23, 3314–3324.

    Article  PubMed  CAS  Google Scholar 

  80. Mermoud J.E., Costanzi C., Pehrson J.R., Brockdorff N. 1999. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147, 1399–1408.

    Article  PubMed  CAS  Google Scholar 

  81. Ladurner A.G. 2003. Inactivating chromosomes: A macro domainthat minimizes transcription. Mol. Cell. 12, 1–3.

    Article  PubMed  CAS  Google Scholar 

  82. Gautier T., Abbott D.W., Molla A., Verdel A., Ausio J., Dimitrov S. 2004. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep. 5, 715–720.

    Article  PubMed  CAS  Google Scholar 

  83. Rangasamy D., Greaves I., Tremethick D.J. 2004. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nature Struct. Mol. Biol. 11, 650–655.

    Article  CAS  Google Scholar 

  84. Leach T.J., Mazzeo M., Chotkowski H.L., Madigan J.P., Wotring M.G., Glaser R.L. 2000. Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J. Biol. Chem. 275, 23267–23272.

    Article  PubMed  CAS  Google Scholar 

  85. Swaminathan J., Baxter E.M., Corces V.G. 2005. The role of H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev. 19, 65–76.

    Article  PubMed  CAS  Google Scholar 

  86. Allis C.D., Richman R., Gorovsky M.A., Ziegle Y.S., Touchstone B., Bradley W.A., Cook R.G. 1986. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J. Biol. Chem. 261, 1941–1948.

    PubMed  CAS  Google Scholar 

  87. Santisteban M.S., Kalashnikova T., Smith M.M. 2000. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell. 103, 411–422.

    Article  PubMed  CAS  Google Scholar 

  88. Kobor M., Venkatasubrahmanyam S., Meneghini M.D., Gin J.W., Jennings J.L., Link A.J., Madhani H.D., Rine J. 2004. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, 0587–0599.

    Article  Google Scholar 

  89. Boeger H., Griesenbeck J., Strattan J.S., Kornberg R.D. 2004. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell. 14, 667–673.

    Article  PubMed  CAS  Google Scholar 

  90. Meneghini M.D., Wu M., Madhani H.D. 2003. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell. 112, 725–736.

    Article  PubMed  CAS  Google Scholar 

  91. Krogan N.J., Keogh M.C., Datta N., Sawa C., Ryan O.W., Ding H., Haw R.A., Pootoolal J., Tong A., Canadien V., Richards D.P., Wu X., Emili A., Hughes T.R., Buratowski S., Greenblatt J.F. 2003. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell. 12, 1565–1576.

    Article  PubMed  CAS  Google Scholar 

  92. Rogakou E.P., Boon C., Redon C., Bonner W.M. 1999. Megabase chromatin domains involved in DNA doublestrand breaks in vivo. J. Cell Biol. 146, 905–916.

    Article  PubMed  CAS  Google Scholar 

  93. Paull T.T., Rogakou E.P., Yamazaki V., Kirchgessner C.U., Gellert M., Bonner W.M. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895.

    Article  PubMed  CAS  Google Scholar 

  94. Celeste A., Difilippantonio S., Difilippantonio M.J., Fernandez-Capetillo O., Pilch D.R., Sedelnikova O.A., Eckhaus M., Ried T., Bonner W.M., Nussenzweig A. 2003. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell. 114, 371–383.

    Article  PubMed  CAS  Google Scholar 

  95. Green G.R., Collas P., Burrell A., Poccia D.L. 1995. Histone phosphorylation during sea urchin development. Semin. Cell Biol. 6, 219–227.

    Article  PubMed  CAS  Google Scholar 

  96. Ahmad K., Henikoff S. 2002a. Histone H3 variants specify modes of chromatin assembly. Proc. Natl. Acad. Sci. USA. 99, 16477–16484.

    Article  PubMed  CAS  Google Scholar 

  97. Albig W., Ebentheuer J., Klobeck G., Kunz J., Doenecke D. 1996. A solitary human H3 histone gene on chromosome 1. Hum. Genet. 97, 486–491.

    PubMed  CAS  Google Scholar 

  98. Ahmad K., Henikoff S. 2002b. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell. 9, 1191–2000.

    Article  PubMed  CAS  Google Scholar 

  99. McKittrick E., Gafken P.R., Ahmad K., Henikoff S. 2004. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. USA, 101, 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  100. Henikoff S., Furuyama T., Ahmad K. 2004. Histone variants, nucleosome assembly, and epigenetic inheritance. Trends Genet. 20, 320–326.

    Article  PubMed  CAS  Google Scholar 

  101. Waterborg J.H. 1993. Dynamic methylation of alfalfa histone H3. J. Biol. Chem. 268, 4918–4921.

    PubMed  CAS  Google Scholar 

  102. Lohr D., Hereford L. 1979. Yeast chromatin is uniformly digested by DNase-I. Proc. Natl. Acad. Sci. USA. 76, 4285–4288.

    Article  PubMed  CAS  Google Scholar 

  103. Kunitoku N., Sasayama T., Marumoto T., Zhang D., Honda S., Kobayashi O., Hatakeyama K., Ushio Y., Saya H., Hirota T. 2003. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell. 5, 853–864.

    Article  PubMed  CAS  Google Scholar 

  104. Carmena M., Earnshaw W.C. 2003. The cellular geography of aurora kinases. Nature Rev. Mol. Cell Biol. 4, 842–854.

    Article  CAS  Google Scholar 

  105. Collins K.A., Furuyama S., Biggins S. 2004. Ubiquitinproteasome mediated proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972.

    Article  PubMed  CAS  Google Scholar 

  106. Blower M.D., Karpen G.H. 2001. The role of Drosophila CID in kinetochore formation, cell-cycle progression, and heterochromatin interactions. Nature Cell Biol. 3, 730–739.

    Article  PubMed  CAS  Google Scholar 

  107. Oegema K., Desai A., Rybina S., Kirkham M., Hyman A. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226.

    Article  PubMed  CAS  Google Scholar 

  108. Ouspenski I.I., Van Hooser A.A., Brinkley B.R. 2003. Relevance of histone acetylation and replication timing for deposition of centromeric histone CENP-A. Exp. Cell Res. 285, 175–188.

    Article  PubMed  CAS  Google Scholar 

  109. Meluh P.B., Yang P., Glowczewski L., Koshland D., Smith M.M. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell. 94, 607–613.

    Article  PubMed  CAS  Google Scholar 

  110. Van Hooser A.A., Ouspenski I.I., Gregson H.C., Starr D.A., Yen T.J., Goldberg M.L., Yokomori K., Earnshaw W.C., Sullivan K.F., Brinkley B.R. 2001. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542.

    PubMed  Google Scholar 

  111. Zeitlin S.G., Shelby R.D., Sullivan K.F. 2001. CENP-A is phosphorylated by Aurora-B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol. 155, 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  112. Akhmanova A., Miedema K., Hennig W. 1996. Identification and characterization of the Drosophila histone H4 replacement gene. FEBS Lett. 388, 219–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 3, pp. 395–407.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, C., Liu, H. & Zheng, GC. The modification and variants of histone. Mol Biol 41, 349–360 (2007). https://doi.org/10.1134/S0026893307030028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307030028

Key words

Navigation