Skip to main content
Log in

Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Previous studies have shown that the late embryogenesis abundant (LEA) group 3 proteins significantly respond to changes in environmental conditions. However, reports that demonstrate their biological role, especially in Arabidopsis, are notably limited. This study examines the functional roles of the Arabidopsis LEA group 3 proteins AtLEA3-3 and AtLEA3-4 in abiotic stress and ABA treatments. Expression of AtLEA3-3 and AtLEA3-4 is upregulated by ABA, high salinity, and osmotic stress. Results on the ectopic expression of AtLEA3-3 and AtLEA3-4 in E. coli suggest that both proteins play important roles in resistance to cold stress. Overexpression of AtLEA3-3 in Arabidopsis (AtLEA3-3-OE) confers salt and osmotic stress tolerance that is characterized during germination and early seedling establishment. However, AtLEA3-3-OE lines show sensitivity to ABA treatment during early seedling development. These results suggest that accumulation of AtLEA3-3 mRNA and/or proteins may help heterologous ABA reinitiate second dormancy during seedling establishment. Analysis of yellow fluorescent fusion proteins localization shows that AtLEA3-3 and AtLEA3-4 are mainly distributed in the ER and that AtLEA3-3 also localizes in the nucleus, and in response to salt, mannitol, cold, or BFA treatments, the localization of AtLEA3-3 and AtLEA3-4 is altered and becomes more condensed. Protein translocalization may be a positive and effective strategy for responding to abiotic stresses. Taken together, these results suggest that AtLEA3-3 has an important function during seed germination and seedling development of Arabidopsis under abiotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingram J., Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.

    Article  PubMed  CAS  Google Scholar 

  2. Bartels D., Sunkar R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23–58.

    Article  CAS  Google Scholar 

  3. Dure L., Chlan C. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: 12. Purification and properties of principal storage proteins. Plant Physiol. 68, 180–186.

    Article  PubMed  CAS  Google Scholar 

  4. Battaglia M., Olvera-Carrillo Y., Garciarrubio A., et al. 2008. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24.

    Article  PubMed  CAS  Google Scholar 

  5. Wise M.J. 2003. LEAping to conclusions: A computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 4, 52.

    Article  Google Scholar 

  6. Bies-Ethe’ve N., Gaubier-Comella P., Debures A., et al. 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 67, 107–124.

    Article  Google Scholar 

  7. Hundertmark M., Hincha D.K. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9, 118–139.

    Article  PubMed  Google Scholar 

  8. Dure L. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3, 363–369.

    Article  PubMed  CAS  Google Scholar 

  9. Dure L. 2001. Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Pept. Lett. 8, 115–122.

    Article  CAS  Google Scholar 

  10. Goyal K., Tisi L., Basran A., et al. 2003. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 278, 12977–12984.

    Article  PubMed  CAS  Google Scholar 

  11. Wolkers W.F., McCready S., Brandt W.F., et al. 2001. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim. Biophys. Acta. 1544, 196–206.

    Article  PubMed  CAS  Google Scholar 

  12. Tolleter D., Jaquinod M., Mangavel C., et al. 2007. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell. 19, 1580–1589.

    Article  PubMed  CAS  Google Scholar 

  13. Tunnacliffe A., Wise M.J. 2007. The continuing conundrum of LEA proteins. Naturwissenschaften. 94, 791–812.

    Article  PubMed  CAS  Google Scholar 

  14. Bray E.A. 1993. Molecular responses to water deficit. Plant Physiol. 103, 1035–1040.

    PubMed  CAS  Google Scholar 

  15. Cuming A.C. 1999. LEA proteins. In: Seed Proteins. Eds. Casey R., Shewry P.R. Dordrecht: Kluwer, 753–780.

    Google Scholar 

  16. Honjoh K.I., Matsumoto H., Shimizu H., et al. 2000. Cryoprotective activities of Group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci. Biotechnol. Biochem. 64, 1656–1663.

    Article  PubMed  CAS  Google Scholar 

  17. Goyal K., Walton L.J., Tunnacliffe A. 2005. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388, 151–157.

    Article  PubMed  CAS  Google Scholar 

  18. Grelet J., Benamar A., Teyssier E., et al. 2005. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol. 137, 157–167.

    Article  PubMed  CAS  Google Scholar 

  19. Reyes J.L., Rodrigo M.J., Colmenero-Flores J.M., et al. 2005. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ. 28, 709–718.

    Article  CAS  Google Scholar 

  20. Chakrabortee S., Boschetti C., Walton L.J., et al. 2007. Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc. Natl. Acad. Sci. U. S. A. 104, 18073–18078.

    Article  PubMed  CAS  Google Scholar 

  21. Nakayama K., Okawa K., Kakizaki T., et al. 2007. Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol. 144, 513–523.

    Article  PubMed  CAS  Google Scholar 

  22. Yu J.N., Zhang J.S., Shan L., Chen S.Y. 2005. Two new group 3 LEA genes of wheat and their functional analysis in yeast. J. Integr. Plant Biol. 47, 1372–1381.

    Article  CAS  Google Scholar 

  23. Zhang L., Ohta A., Takagi M., Imai R. 2000. Expression of plant Group 2 and Group 3 LEA genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J. Biochem. 127, 611–616.

    PubMed  CAS  Google Scholar 

  24. Liu Y., Zheng Y. 2005. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 331, 325–332.

    Article  PubMed  CAS  Google Scholar 

  25. Xu D., Duan X., Wang B., et al. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249–257.

    PubMed  CAS  Google Scholar 

  26. Sivamani E., Bahieldin A., Wraith J.M., et al. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155, 1–9.

    Article  PubMed  CAS  Google Scholar 

  27. NDong C., Danyluk J., Wilson K.E., et al. 2002. Coldregulated cereal chloroplast late embryogenesis abundant-like proteins: Molecular characterization and functional analyses. Plant Physiol. 129, 1368–1381.

    Article  PubMed  CAS  Google Scholar 

  28. Li Y., Lee K.K., Walsh S., et al. 2006. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using relevance vector machine. Genome Res. 16, 414–427.

    Article  PubMed  CAS  Google Scholar 

  29. Dong C.H., Hu X., Tang W., et al. 2006 A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol. Cell Biol. 26, 9533–9543.

    Article  PubMed  CAS  Google Scholar 

  30. Sakuma Y., Maruyama K., Osakabe Y., et al. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 18, 1292–1309.

    Article  PubMed  CAS  Google Scholar 

  31. Sakuma Y., Maruyama K., Qin F., et al. 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 18822–18827.

    Article  PubMed  CAS  Google Scholar 

  32. Lee J., He K., Stolc V., et al. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell. 19, 731–749.

    Article  PubMed  CAS  Google Scholar 

  33. Davletova S., Schlauch K., Coutu J., et al. 2005. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139, 847–856.

    Article  PubMed  CAS  Google Scholar 

  34. Cao D., Cheng H., Wu W., et al. 2006. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol. 142, 509–525.

    Article  PubMed  CAS  Google Scholar 

  35. Batoko H., Zheng H.Q., Hawes C., Moore I. 2000. A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell. 12, 2201–2217.

    Article  PubMed  CAS  Google Scholar 

  36. Dalal M., Tayal D., Chinnusamy V., et al. 2009. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J. Biotechnol. 139, 137–145.

    Article  PubMed  CAS  Google Scholar 

  37. Yoo S.D., Cho Y.H., Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols. 2, 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  38. Samalova M., Fricker M., Moore I. 2008. Quantitative and qualitative analysis of plant membrane traffic using fluorescent proteins. Methods Cell Biol. 85, 353–380.

    Article  PubMed  CAS  Google Scholar 

  39. McGuffin L.J., Bryson K., Jones D.T. 2000. The PSIPRED protein structure prediction server. Bioinformatics. 16, 404–405.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y., Cao G., Qu L.J., Gu H. 2009. Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. Plant Cell Rep. 28, 337–346.

    Article  PubMed  CAS  Google Scholar 

  41. Lopez-Molina L., Mongrand S., Chua N.H. 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 98, 4782–4787.

    Article  PubMed  CAS  Google Scholar 

  42. Lopez-Molina L., Mongrand S., McLachlin D.T., et al. 2002. ABI5 acts downstream of ABI3 to execute an ABA dependent growth arrest during germination. Plant J. 32, 317–328.

    Article  PubMed  CAS  Google Scholar 

  43. Carles C., Bies-Etheve N., Aspart L., et al. 2002. Regulation of Arabidopsis thaliana Em genes: Role of ABI5. Plant J. 30, 373–383.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Liu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Liu, F., Ma, M. et al. Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana . Mol Biol 45, 785–796 (2011). https://doi.org/10.1134/S0026893311050165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311050165

Keywords

Navigation