Skip to main content
Log in

The spectrum of oncogene mutations differs among melanoma subtypes

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Melanoma is the most lethal skin malignancy that comprises clinically relevant molecular subsets defined by specific “driver” mutations in BRAF, NRAS, and KIT genes. Recently, better results in melanoma treatment have been achieved with mutation-specific inhibitors that were developed for clinical use and target only patients with particular tumor genotypes. The aim of this study was to characterize the spectrum of driver mutations in melanoma subtypes from 137 patients with cutaneous melanoma and 14 patients with mucosal melanoma. In the total of 151 melanoma cases, the frequencies of BRAF, NRAS, KIT, PDGFRA, and KRAS mutations were 55.0, 10.6, 4.0, 0.7, and 0.7%, respectively. BRAF mutations were found in 69% of cutaneous melanoma without UV-exposure and in 43% of cutaneous melanoma with chronic UV exposure (p = 0.045), rarely in acral and mucosal melanomas. Most melanomas containing BRAF mutations, V600E (92%) and V600K (6.0%) were potentially sensitive to the BRAF inhibitors vemurafenib and dabrafenib. NRAS mutations were more common in cutaneous melanoma with chronic UV exposure (26.0%), in acral and mucosal melanomas, the dominant mutations being Q61R/K/L (87.5%). KIT mutations were found in cutaneous melanoma with chronic UV exposure (8.7%) and in mucosal melanoma (28.6%), but not in acral melanoma. Most KIT mutations were located in exon 11, and such tumors are sensitive to tyrosine kinase inhibitors. This study has been the first screening for BRAF, NRAS, KIT, PDGFRA, and KRAS hotspot mutations in different subtypes of melanoma in a Russian population. Our data indicate that, on the molecular level, melanoma is a heterogeneous malignancy that should be tested for driver mutations in each case to determine its potential sensitivity to targeted therapy. The results were important for the rational design of melanoma therapy and were used in the treatment of melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacKie R.M., Hauschild A., Eggermont A.M. 2009. Epidemiology of invasive cutaneous melanoma. Ann. Oncol. 20, Suppl. 6, 1–7.

    Article  Google Scholar 

  2. Bertolotto C. 2013. Melanoma: From melanocyte to genetic alterations and clinical options. Scientifica (Cairo). Article ID 635203. http://dx.doi.org/10.1155/2013/635203.

    Google Scholar 

  3. Davydov M.I., Aksel’ E.M. 2014. Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2012 godu (Statistics of Malignant Neoplasms in Russia and CIS Countries, 2012). Moscow: Izd. Gruppa RONTs.

    Google Scholar 

  4. Bello D.M., Ariyan C.E., Carvajal R.D. 2013. Melanoma mutagenesis and aberrant cell signaling. Cancer Control. 20, 261–281.

    PubMed  Google Scholar 

  5. Berger M.F., Hodis E., Heffernan T.P., et al. 2012. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 485, 502–506.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Hansson J. 2010. Familial cutaneous melanoma. Adv. Exp. Med. Biol. 685, 134–145.

    Article  CAS  PubMed  Google Scholar 

  7. Fecher L.A., Cummings S.D., Keefe M.J., Alani R.M. 2007. Towards a molecular classification of melanoma. J. Clin. Oncol. 25, 1606–1620.

    Article  CAS  PubMed  Google Scholar 

  8. Manikhas G.M., Martynyuk V.V. 2012. Pigment nevi and skin melanoma. Sarkomy Kostei Myagkikh Tkanei Opukholi Kozhi. 1, 36–41.

    Google Scholar 

  9. Davies H., Bignell G.R., Cox C., et al. 2002. Mutations of the BRAF gene in human cancer. Nature. 417, 949–954.

    Article  CAS  PubMed  Google Scholar 

  10. Kelleher F.C., McArthur G.A. 2012. Targeting NRAS in melanoma. Cancer J. 18, 132–136.

    Article  CAS  PubMed  Google Scholar 

  11. Fedorenko I.V., Gibney G.T., Keiran S.M. 2013. NRAS mutant melanoma: Biological behavior and future strategies for therapeutic management. Oncogene. 32, 3009–3018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Curtin J.A., Fridlyand J., Kageshita T., et al. 2005. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  13. Vredeveld L.C., Possik P.A., Smit M.A., et al. 2012. Abrogation of BRAF V600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 26, 1055–1069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hodis E., Watson I.R., Kryukov G.V., et al. 2012. A landscape of driver mutations in melanoma. Cell. 150, 251–263.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Krauthammer M., Kong Y., Ha B.H., et al. 2012. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Flaherty K.T., Puzanov I., Kim K.B., et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Long G.V., Trefzer U., Davies M.A., Kefford R.F., Ascierto P.A., Chapman P.B. 2012. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicenter, open-label, phase 2 trail. Lancet Oncol. 13, 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  18. Dumaz N. 2011. Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases. 2, 289–292.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ascierto P.A., Schadendor D., Berking C., et al. 2013. MEK 162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: A non randomized, open-label phase 2 study. Lancet Oncol. 14, 249–256.

    Article  CAS  PubMed  Google Scholar 

  20. Dai B., Cai X., Kong Y.Y., Yang F., Shen X.X., Wang L.W., Kong J.C. 2013. Analysis of KIT expression and gene mutation in human acral melanoma, with a comparison between primary tumors and corresponding metastases/recurrences. Hum. Pathol. 44, 1472–1478.

    Article  CAS  PubMed  Google Scholar 

  21. Chakraborty R., Wieland C.N., Comfere N.I. 2013. Molecular targeted therapies in metastatic melanoma. Pharmacogenomics Pers. Med. 6, 49–56.

    Google Scholar 

  22. Curtin J.A., Pinkel D., Bastian B.C. 2008. Absence of PDGFRA mutations in primary melanoma. J. Invest. Dermatol. 128, 488–4898.

    Article  CAS  PubMed  Google Scholar 

  23. Dai J., Kong Y., Si L., et al. 2013. Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin. Cancer Res. 19, 6935–6942.

    Article  CAS  PubMed  Google Scholar 

  24. Belyakov I.S., Anurova O.A., Snigur P.V., Tsyganova I.V., Sel’chuk V.Yu., Mazurenko N.N. 2007. Mutations in c-KIT and PDGFRA genes and specific clinical and morpholofgical features of gastrointestinal stromal tumors. Vopr. Onkol. 53, 677–681.

    Google Scholar 

  25. Bowyer S.E., Rao A.D., Lyle M., et al. 2014. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. Melanoma Res. 24, 504–508.

    Article  CAS  PubMed  Google Scholar 

  26. Woodman S.E., Davies M.A. 2010. Targeting KIT in melanoma: A paradigm of molecular medicine and target in metastatic melanoma. Biochem. Pharmacol. 80, 568–574.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Künstlinger H., Binot E., Merkelbach-Bruse S., Huss S., Wardelmann E., Buettner R., Schildhaus H.U. 2014. High-resolution melting analysis is a sensitive diagnostic tool to detect imatinib-resistant and imatinib-sensitive PDGFRA exon 18 mutations in gastrointestinal stromal tumors. Human Pathol. 45, 573–582.

    Article  Google Scholar 

  28. Frank G.A., Zavalishina L.E., Kekeeva T.V., Aleksakhina S.N., Garifullina T.R., Ivantsov O.A., Mityushkina N.V., Pfaifer V., Strelkova T.N., Imyanitov E.N. 2014. First Russian nationwide molecular epidemiological study for melanoma: Results of BRAF mutation analysis. Arkh. Patol. 3, 65–72.

    Google Scholar 

  29. Abysheva S.N., Iyevleva A.G., Efimova N.V., Mokhina Y.B., Sabirova F.A., Ivantsov A.O., Artemieva A.S., Togo A.V., Moiseyenko V.M., Matsko D.E., Imyanitov E.N. 2011. KIT mutations in Russian patients with mucosal melanoma. Melanoma Res. 21, 555–559.

    Article  CAS  PubMed  Google Scholar 

  30. Kovchina K.I., Belyakov I.S., Likhvantseva V.G., Anurova O.A., Mazurenko N.N. 2011. Mutations in KIT, GNAQ, BRAF, and RAS genes in patients with uveal melanoma. Sarkomy Kostei Myagkikh Tkanei Opukholi Kozhi. 2, 24–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Mazurenko.

Additional information

Original Russian Text © N.N. Mazurenko, I.V. Tsyganova, A.A. Lushnikova, D.A. Ponkratova, O.A. Anurova, E.A. Cheremushkin, I.N. Mikhailova, L.V. Demidov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 6, pp. 1022–1029.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurenko, N.N., Tsyganova, I.V., Lushnikova, A.A. et al. The spectrum of oncogene mutations differs among melanoma subtypes. Mol Biol 49, 917–923 (2015). https://doi.org/10.1134/S0026893315060163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315060163

Keywords

Navigation