Skip to main content
Log in

Prospects For the Use of Peptides against Respiratory Syncytial Virus

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The human respiratory syncytial virus (RSV) is one of the most common viral pathogens that affects the lower respiratory tract and could be a reason of bronchiolitis and/or pneumonia. Currently, there are no available effective ways of treating the RSV infection. Attempts to develop preventive vaccine have been unsuccessful. The only therapeutic agent used for RSV treatment is virazole (ribavirin); however, it induces adverse effects. Medications based on neutralizing monoclonal antibodies, such as IGIV (Respigam), palivizumab (Synagis), and MEDI-524 (Numab), are under clinical trials; however, their use will be limited by their high cost. One of the promising approaches for antiviral therapy is the use of natural peptides (defensins and cathelicidins), or their synthetic analogs. The majority of currently described antiviral peptides are developed against the human immunodeficiency virus, the herpes simplex virus, and the influenza virus. At the same time, a body of experimental data evidencing anti-RSV activity of peptides has been accumulated. The main advantages of peptide drugs are their wide spectrum of antiviral activity and low toxicity. However, there are obstacles in implementing peptide-based drugs in clinical practice. Due to their low resistance to the action of serum proteases, most authors consider peptides promising only for local application. Given that RSV affects the epithelium of the respiratory tract, where the protease activity is lower than in the systemic circulation, it is possible to develop locally active peptide drugs, for example, as inhalation forms. Their stability could also be increased by the synthesis of dendrimer peptides and by the development of recombinant peptides as precursor proteins. Anti-RSV peptides can be divided into several groups: (1) attachment and/or fusion blockers; (2) peptides displaying direct virucidal activity, disrupting the viral envelope. Such peptides, which suppress early stages of the viral life cycle, are considered prophylactic agents. However, for several peptides, their immunoregulatory properties have been described, which opens the possibility for therapeutic use. This review summarizes the information on the antiviral properties of such peptides and mechanisms of their action and describes the prospects of the future development of antiviral peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Jartti T., Gern J.E. 2017. Role of viral infections in the development and exacerbation of asthma in children. J. Allergy Clin. Immunol. 140, 895–906.

    Article  PubMed  Google Scholar 

  2. Hall C.B., Weinberg G.A., Iwane M.K., Blumkin A.K., Edwards K.M., Staat M.A., Auinger P., Griffin M.R., Poehling K.A., Erdman D., Grijalva C.G., Zhu Y., Szilagyi P. 2009. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 360, 588–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muralidharan A., Li C., Wang L., Li X. 2017. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Exp. Rev. Vaccines. 16, 351–360.

    Article  CAS  Google Scholar 

  4. Janai H.K., Marks M.I., Zaleska M., Stutman H.R. 1990. Ribavirin: Adverse drug reactions, 1986 to 1988. Pediatr. Infect. Dis. J. 9, 209–211.

    Article  CAS  PubMed  Google Scholar 

  5. Wang D., Cummins C., Bayliss S., Sandercock J., Burls A. 2008. Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: A systematic review and economic evaluation. Health Technol. Assessment. 12, 1–86.

    Google Scholar 

  6. Khaitov M.R., Litvin L.S., Shilovsky I.P., Bashkatova Yu.N., Faizuloev E.B., Zverev V.V. 2010. RNA interference. New approaches to the development of antiviral agents. Immunologiya. 31, 69–76.

    CAS  Google Scholar 

  7. Osminkina L.A., Timoshenko V.Yu., Shilovsky I.P., Kornilaeva G.V., Shevchenko S.N., Gongalsky M.B., Tamarov K.P., Abramchuk S.S., Nikiforov V.N., Khaitov M.R., Karamov E.V. 2014. Porous silicon nanoparticles as scavengers of hazardous viruses. J. Nanoparticle Res. 16, 2430.

    Article  CAS  Google Scholar 

  8. Battles M.B., Langedijk J.P., Furmanova-Hollenstein P., Chaiwatpongsakorn S., Costello H.M., Kwanten L., Vranckx L., Vink P., Jaensch S., Jonckers T.H., Koul A., Arnoult E., Peeples M.E., Roymans D., McLellan J.S. 2016. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol. 12, 87–93.

    Article  CAS  PubMed  Google Scholar 

  9. Findlay E.G., Currie S.M., Davidson D.J. 2013. Cationic host defence peptides: Potential as antiviral therapeutics. BioDrugs. 27, 479–493.

    Article  CAS  Google Scholar 

  10. Zhao H., Zhou J., Zhang K., Chu H., Liu D., Poon V.K.M., Chan C.C.S., Leung H.C., Fai H., Lin Y.P., Zhang A.J.X., Jin D.Y., Yuen K.Y., Zheng B.J. 2016. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci. Rep. 6, 22008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fjell C.D., Hiss J.A., Hancock R.E.W., Schneider G. 2012. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 11, 37–51.

    Article  CAS  Google Scholar 

  12. Shepherd N.E., Hoang H.N., Desai V.S., Letouze E., Young P.R., Fairlie D.P. 2006. Modular α-helical mimetics with antiviral activity against respiratory syncytial virus. J. Am. Chem. Soc. 128, 13284–13289.

    Article  CAS  PubMed  Google Scholar 

  13. Collins P.L., Fearns R., Graham B.S. 2013. Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease. Curr. Top. Microbiol. Immunol. 372, 3–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Battles M.B., McLellan J.S. 2019. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 17 (4), 233–245. https://doi.org/10.1038/s41579-019-0149-x

    Article  CAS  PubMed  Google Scholar 

  15. Griffiths C., Drews S.J., Marchant D.J. 2017. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment. Clin. Microbiol. Rev. 30, 277–319.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson S.M., McNally B.A., Ioannidis I., Flano E., Teng M.N., Oomens A.G., Walsh E.E., Peeples M.E. 2015. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathogens. 11, e1005318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tayyari F., Marchant D., Moraes T.J., Duan W., Mastrangelo P., Hegele R.G. 2011. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat. Med. 17, 1132–1135.

    Article  CAS  PubMed  Google Scholar 

  18. Shahriari S., Gordon J., Ghildyal R. 2016. Host cytoskeleton in respiratory syncytial virus assembly and budding. Virology J. 13, 161.

    Article  CAS  Google Scholar 

  19. Ericksen B., Wu Z., Lu W., Lehrer R.I. 2005. Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob. Agents Chemother. 49, 269–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holly M.K., Diaz K., Smith J.G. 2017. Defensins in viral infection and pathogenesis. Annu. Rev. Virol. 4, 369–391.

    Article  CAS  PubMed  Google Scholar 

  21. Demirkhanyan L.H., Marin M., Padilla-Parra S., Zhan C., Miyauchi K., Jean-Baptiste M., Novitskiy G., Lu W., Melikyan G.B. 2012. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J. Biol. Chem. 287, 28821–28838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skalickova S., Heger Z., Krejcova L., Pekarik V., Bastl K., Janda J., Kostolansky F., Vareckova E., Zitka O., Adam V., Kizek R. 2015. Perspective of use of antiviral peptides against influenza virus. Viruses. 7, 5428–5442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chow B.T., Soto M., Lo B.L., Crosby D.C., Camerini D. 2012. Antibacterial activity of four human beta-defensins: HBD-19, HBD-23, HBD-27, and HBD-29. Polymers. 4, 747–758.

    Article  CAS  Google Scholar 

  24. Hazrati E., Galen B., Lu W., Wang W., Ouyang Y., Keller M.J., Lehrer R.I., Herold B.C. 2006. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol. 177, 8658–8666.

    Article  CAS  PubMed  Google Scholar 

  25. Lafferty M.K., Sun L., Christensen-Quick A., Lu W., Garzino-Demo A. 2017. Human beta defensin 2 selectively inhibits HIV-1 in highly permissive CCR6+CD4+ T cells. Viruses. 9, 111.

    Article  CAS  PubMed Central  Google Scholar 

  26. Jiang Y., Yang D., Li W., Wang B., Jiang Z., Li M. 2012. Antiviral activity of recombinant mouse β-defensin 3 against influenza A virus in vitro and in vivo. Antivir. Chem. Chemother. 22, 255–262.

    Article  CAS  PubMed  Google Scholar 

  27. Kota S., Sabbah A., Chang T.H., Harnack R., Xiang Y., Meng X., Bose S. 2008. Role of human β-defensin-2 during tumor necrosis factor-α/NF-κB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem. 283, 22417–22429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yasin B., Wang W., Pang M., Cheshenko N., Hong T., Waring A.J., Herold B.C., Wagar E.A., Lehrer R.I. 2004. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seidel A., Ye Y., de Armas L.R., Soto M., Yarosh W., Marcsisin R.A., Tran D., Selsted M.E., Camerini D. 2010. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLoS One. 5, e9737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prantner D., Shirey K.A., Lai W., Lu W., Cole A.M., Vogel S.N., Garzino-Demo A. 2017. The θ-defensin retrocyclin 101 inhibits TLR4- and TLR2-dependent signaling and protects mice against influenza infection. J. Leukoc. Biol. 102, 1103–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fabisiak A., Murawska N., Fichna J. 2016. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol. Rep. 68, 802–808.

    Article  CAS  PubMed  Google Scholar 

  32. Wong J.H., Legowska A., Rolka K., Ng T.B., Hui M., Cho C.H., Lam W.W., Au S.W., Gu O.W., Wan D.C. 2011. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides. 32, 1117–1122.

    Article  CAS  PubMed  Google Scholar 

  33. Barlow P.G., Svoboda P., Mackellar A., Nash A.A., York I.A., Pohl J., Davidson D.J., Donis R.O. 2011. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One. 6, e25333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Currie S.M., Findlay E.G., McHugh B.J., Mackellar A., Man T., Macmillan D., Wang H., Fitch P.M., Schwarze J., Davidson D.J. 2013. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One. 8, e73659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bose S., Kar N., Maitra R., DiDonato J., Banerjee A.K. 2003. Temporal activation of NF-κB regulates an interferon-independent innate antiviral response against cytoplasmic RNA viruses. Proc. Natl. Acad. Sci. U. S. A. 100, 10890–10895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lambert D.M., Barney S., Lambert A.L., Guthrie K., Medinas R., Davis D.E., Bucy T., Erickson J., Merutka G., Petteway S.R. Jr. 1996. Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Med. Sci. 93, 2186–2191.

    CAS  Google Scholar 

  37. Gorman J.J., McKimm-Breschkin J.L., Norton R.S., Barnham K.J. 2001. Antiviral activity and structural characteristics of the nonglycosylated central subdomain of human respiratory syncytial virus attachment (G) glycoprotein. J. Biol. Chem. 276, 38988–38994.

    Article  CAS  PubMed  Google Scholar 

  38. Donalisio M., Rusnati M., Cagno V., Civra A., Bugatti A., Giuliani A., Pirri G., Volante M., Papotti M., Landolfo S., Lembo D. 2012. Inhibition of human respiratory syncytial virus infectivity by a dendrimeric heparan sulfate-binding peptide. Antimicrob. Agents Chemother. 56, 5278–5288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Donalisio M., Rusnati M., Civra A., Bugatti A., Allemand D., Pirri G., Giuliani A., Landolfo S., Lembo D. 2010. Identification of a dendrimeric heparan sulfate-binding peptide that inhibits infectivity of genital types of human papillomaviruses. Antimicrob. Agents Chemother. 54, 4290–4299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Currie S.M., Gwyer Findlay E., McFarlane A.J., Fitch P.M., Böttcher B., Colegrave N., Paras A., Jozwik A., Chiu C., Schwarze J., Davidson D.J. 2016. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol. 196, 2699–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vanheule V., Vervaeke P., Mortier A., Noppen S., Gouwy M., Snoeck R., Andrei G., Van Damme J., Liekens S., Proost P. 2016. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem. Pharmacol. 100, 73–85.

    Article  CAS  PubMed  Google Scholar 

  42. Uddin M.B., Lee B.H., Nikapitiya C., Kim J.H., Kim T.H., Lee H.C., Kim C.G., Lee J.S., Kim C.J. 2016. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol. 54, 853–866.

    Article  CAS  PubMed  Google Scholar 

  43. Pastey M.K., Gower T.L., Spearman P.W., Crowe J.E., Jr., Graham B.S. 2000. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat. Med. 6, 35–40.

    Article  CAS  PubMed  Google Scholar 

  44. Ortega-Berlanga B., Musiychuk K., Shoji Y., Chichester J.A., Yusibov V., Patiño-Rodríguez O., Noyola D.E., Alpuche-Solís Á.G. 2016. Engineering and expression of a RhoA peptide against respiratory syncytial virus infection in plants. Planta. 243, 451–458.

    Article  CAS  PubMed  Google Scholar 

  45. Sundukova M.S., Shilovskiy I.P., Andreev S.M., Kuptsova M.M., Khaitov M.R. 2017. Synthetic cationic peptides with linear helical and dendrimeric structures effectively reduce respiratory virus infection in vitro. Allergy. 72, 300–301.

    Article  Google Scholar 

  46. Bishop J.R., Schuksz M., Esko J.D. 2007. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  47. Feldman S.A., Audet S., Beeler J.A. 2000. The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J. Virol. 74, 6442–6447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.H., Su B., Nestle F.O., Zal T., Mellman I., Schröder J.M., Liu Y.J., Gilliet M. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449, 564–569.

    Article  CAS  PubMed  Google Scholar 

  49. Marcos J.F., Gandía M. 2009. Antimicrobial peptides: To membranes and beyond. Exp. Opin. Drug Discov. 4, 659–671.

    Article  CAS  Google Scholar 

  50. Gordon-Grossman M., Zimmermann H., Wol S.G., Shai Y., Goldfarb D. 2012. Investigation of model membrane disruption mechanism by melittin using pulse electron paramagnetic resonance spectroscopy and cryogenic transmission electron microscopy. J. Phys. Chem. B. 116, 179–188.

    Article  CAS  PubMed  Google Scholar 

  51. Ghanem A., Mayer D., Chase G., Tegge W., Frank R., Kochs G., García-Sastre A., Schwemmle M. 2007. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81, 7801–7804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salvatore M., Garcia-Sastre A., Ruchala P., Lehrer R.I., Chang T., Klotman M.E. 2007. α-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis. 196, 835–843.

    Article  CAS  PubMed  Google Scholar 

  53. Tecle T., White M.R., Gantz D., Crouch E.C., Hartshorn K.L. 2007. Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol. 178, 8046–8052.

    Article  CAS  PubMed  Google Scholar 

  54. Lai Y., Adhikarakunnathu S., Bhardwaj K., Ranjith-Kumar C.T., Wen Y., Jordan J.L., Wu L.H., Dragnea B., San Mateo L., Kao C.C. 2011. Ll37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS One. 6, e26632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qu P., Gao W., Chen H., Li D., Yang N., Zhu J., Feng X., Liu C., Li Z. 2016. The central hinge link truncation of the antimicrobial peptide fowlicidin-3 enhances its cell selectivity without antibacterial activity loss. Antimicrob. Agents Chemother. 60, 2798–2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin M.C., Hui C.F., Chen J.Y., Wu J.L. 2013. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides. 44, 139–148.

    Article  CAS  PubMed  Google Scholar 

  57. Boas U., Heegaard P.M.H. 2004. Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63.

    Article  CAS  PubMed  Google Scholar 

  58. Svenson S., Tomalia D.A. 2012. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Del. Rev. 57, 2106–2129.

    Article  CAS  Google Scholar 

  59. Cloninger M.J. 2002. Biological applications of dendrimers. Curr. Opin. Chem. Biol. 9, 341.

    Google Scholar 

  60. Luganini A., Giuliani A., Pirri G., Pizzuto L., Landolfo S., Gribaudo G. 2010. Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate. Antiviral Res. 85, 532–540.

    Article  CAS  PubMed  Google Scholar 

  61. Luganini A., Nicoletto S.F., Pizzuto L., Pirri G., Giuliani A., Landolfo S., Gribaudo G. 2011. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother. 55, 3231–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 18-74-10002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Shilovskiy.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovskiy, I.P., Andreev, S.M., Kozhikhova, K.V. et al. Prospects For the Use of Peptides against Respiratory Syncytial Virus. Mol Biol 53, 484–500 (2019). https://doi.org/10.1134/S0026893319040125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319040125

Keywords:

Navigation