Skip to main content
Log in

Optical properties of nanostructured layers on the surface of an underlying medium

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An analytical approach to the description of the optical characteristics of layers consisting of interacting nanoclusters is developed based on the integral equation method. Expressions for the fields inside and outside the system are obtained, the effective parameters of the structure elements are studied taking into account the mutual polarizing effect of nanoclusters and underlying medium, and the applicability conditions of the model proposed are determined. The possibility of controllable the tuning of the spectral properties of the system by changing its structural parameters is considered; it is shown that the reflection from the substrate surface can be decreased by depositing a nanostructured coating. Good agreement is obtained between the analytical calculation and the exact numerical solution of Maxwell’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Shalaev, Cai. Wenshan, U. K. Chettiar, et al., Opt. Lett. 30(24), 43356 (2005).

    Article  ADS  Google Scholar 

  2. D. R. Smith and J. B. Pendry, J. Opt. Soc. Am. B 23, 391 (2006).

    Article  ADS  Google Scholar 

  3. V. M. Agranovich, Y. R. Shen, R. H. Baughman, et al., Phys. Rev. 69, 165112 (2004).

    Google Scholar 

  4. O. N. Gadomskiĭ and A. S. Shalin, Zh. Éksp. Teor. Fiz. 132(10), 870 (2007).

    Google Scholar 

  5. O. N. Gadomskiĭ and A. S. Shalin, Fiz. Met. Metalloved. 101(5), 462 (2006).

    Google Scholar 

  6. A. N. Grigorenko, A. K. Geim, H. F. Glesson, et al., Nature 438, 335 (2005).

    Article  ADS  Google Scholar 

  7. S. Zhang, W. Fan, N. C. Panoiu, et al., Phys. Rev. Lett. 95, 137404 (2005).

  8. S. V. Sukhov, Kvantovaya Élektron. (Moscow) 35(8), 741 (2005).

    Article  Google Scholar 

  9. C. Genett and T. W. Ebbesen, Nature 445, 39 (2007).

    Article  ADS  Google Scholar 

  10. A. Alu and N. Engheta, Phys. Rev. E 72, 016623 (2005).

  11. F. J. Garcia de Abajo. G. Gomes-Santos, L. A. Blanco, et al., Phys. Rev. Lett. 95, 067403 (2005).

    Google Scholar 

  12. Garnet J. C. Maxwell, Philos. Trans. Ray. Soc. A 203, 385 (1904).

    Article  ADS  Google Scholar 

  13. A. S. Shalin, Zh. Prikl. Spektrosk. 73(5), 641 (2006).

    Google Scholar 

  14. A. N. Oraevskiĭ and I. E. Protsenko, Kvantovaya Élektron. (Moscow) 31(3), 252 (2001).

    Article  Google Scholar 

  15. A. S. Shalin, Izv. Vyssh. Uchebn. Zaved., Fiz. 49(8), 3 (2006).

    Google Scholar 

  16. S. G. Moiseev, Zh. Prikl. Spektrosk. 71(2), 235 (2004).

    MathSciNet  Google Scholar 

  17. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  18. M. T. Haarmans and D. Bedeaux, Thin Solid Films 224, 117 (1993).

    Article  ADS  Google Scholar 

  19. G. Mie, Ann. Phys. (New York) 25, 377 (1908).

    ADS  Google Scholar 

  20. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, New York, 1195).

    Google Scholar 

  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

    MATH  Google Scholar 

  22. D. W. Prather and S. Shi, J. Opt. Am. A 16, 1131 (1999).

    Article  ADS  Google Scholar 

  23. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, J. Quant. Spectrosc. Rad. Transfer 106, 546 (2007).

    Article  ADS  Google Scholar 

  24. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, Opt. Express 13(7), 2668 (2005).

    Article  ADS  Google Scholar 

  25. C. R. Bohren and D. R. Huffman Absorption and Scattering of Light by Small Particles (Wiley, New York 1983; Mir, Moscow, 1986).

    Google Scholar 

  26. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow 1973).

    Google Scholar 

  27. G. P. M. Poppe, C. M. J. Wijers, and A. Silfhout, Phys. Rev. B 44, 7917 (1991).

    Article  ADS  Google Scholar 

  28. C. M. J. Wijers and G. P. M. Poppe, Phys. Rev. B 46, 7605 (1992).

    Article  ADS  Google Scholar 

  29. S. V. Sukhov and K. V. Krutitsky, Phys. Rev. B 65, 115407 (2002).

    Google Scholar 

  30. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954; Inostrannaya Literatura, Moscow, 1958).

    MATH  Google Scholar 

  31. K. V. Krutitskiĭ and S. V. Sukhov, Opt. Spektrosk. 88(5), 827 (2000).

    Google Scholar 

  32. C. M. J. Wijers, R. Del Sole, and F. Manghi, Phys. Rev. B 44, 1825 (1991).

    Article  ADS  Google Scholar 

  33. O. N. Gadomsky and K. V. Krutitsky, J. Opt. Soc. Am. B 13, 1679 (1996).

    Article  ADS  Google Scholar 

  34. A. B. Evlyukhin and S. I. Bozhevolnyi, Phys. Rev. B 71, 134304 (2005).

    Google Scholar 

  35. http://www.comsol.com/products/multiphysics.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shalin.

Additional information

Original Russian Text © A.S. Shalin, S.G. Moiseev, 2009, published in Optika i Spektroskopiya, 2009, Vol. 106, No. 6, pp. 1004–1013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalin, A.S., Moiseev, S.G. Optical properties of nanostructured layers on the surface of an underlying medium. Opt. Spectrosc. 106, 916–925 (2009). https://doi.org/10.1134/S0030400X09060228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X09060228

PACS numbers

Navigation