Skip to main content
Log in

Spectral Properties and Photodynamic Activity of Complexes of Polycationic Derivative of Fullerene C60 with Xanthene Dye Fluorescein

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using spectrophotometry and stationary and kinetic fluorimetry, we have shown that xanthene dye fluorescein forms complexes with polycationic derivative of fullerene in aqueous solutions mainly due to electrostatic interactions. It is found that efficient quenching of singlet excited states of dye occurs in the structure of these complexes due to the transfer of excitation or electron from dye to fullerene. As a result, the photodynamic activity of the newly formed complex is much higher than that of fluorescein and fullerene derivative. This effect makes it possible to predict the formation of new-generation hybrid photodynamic preparations using dyes excited only into a singlet state; as a result, directed searches for these dyes are significantly facilitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Starnadko, Lazer. Med. 6 (1), 4 (2002).

    Google Scholar 

  2. S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, J. Photochem. Photobiol. C 12, 46 (2011).

    Article  Google Scholar 

  3. A. Juzeniene, K. P. Nielsen, and J. Moan, J. Environ. Pathol. Toxicol. Oncol. 25, 7 (2006).

    Article  Google Scholar 

  4. J. W. Aborgast, A. P. Darmanyan, C. S. Foote, F. N. Diederich, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, J. Phys. Chem. 95, 11 (1991).

    Article  Google Scholar 

  5. Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, and T. Nagano, J. Am. Chem. Soc. 125, 12803 (2003).

    Article  Google Scholar 

  6. P. Mroz, G. P. Tegos, H. Gali, T. Wharton, T. Sarna, and M. R. Hamblin, Photochem. Photobiol. Sci. 6, 1139 (2007).

    Article  Google Scholar 

  7. P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna, and M. R. Hamblin, Free Radical Biol. Med. 43, 711 (2007).

    Article  Google Scholar 

  8. M. B. Spesia, M. E. Milanesio, and E. N. Durantini, Eur. J. Med. Chem. 43, 853 (2008).

    Article  Google Scholar 

  9. Y. Doi, A. Ikeda, M. Akiyama, M. Nagano, T. Shigematsu, T. Ogawa, T. Takeya, and T. Nagasaki, Chem. Eur. J. 14, 8892 (2008).

    Article  Google Scholar 

  10. I. Lee, Y. Mackeyev, M. Cho, D. Li, J. H. Kim, L. J. Wilson, and P. J. Alvarez, Environ. Sci. Technol. 43, 6604 (2009).

    Article  ADS  Google Scholar 

  11. L. Huang, M. Terakawa, T. Zhiyentayev, Y. Y. Huang, Y. Sawayama, A. Jahnke, G. P. Tegos, T. Wharton, and M. R. Hamblin, Nanomedicine 6, 442 (2010).

    Google Scholar 

  12. E. Otake, S. Sakuma, K. Torii, A. Maeda, H. Ohi, S. Yano, and A. Morita, Photochem. Photobiol. 86, 1356 (2010).

    Article  Google Scholar 

  13. S. K. Sharma, L. Y. Chiang, and M. R. Hamblin, Nanomedicine 6, 1813 (2011).

    Article  Google Scholar 

  14. Z. Hua, C. Zhang, Y. Huang, S. Sun, W. Guan, and Y. Yao, Chem. Biol. Interact. 195, 86 (2012).

    Article  Google Scholar 

  15. M. Wang, S. Maragani, L. Huang, S. Jeon, T. Canteenwala, M. R. Hamblin, and L. Y. Chiang, Eur. J. Med. Chem. 63, 170 (2013).

    Article  Google Scholar 

  16. R. Yin, M. Wang, Y. Y. Huang, H. C. Huang, P. Avci, L. Y. Chiang, and M. R. Hamblin, Nanomed.: Nanotechnol., Biol., Med. 10, 795 (2014).

    Google Scholar 

  17. A. Halder, S. Bhatt, S. K. Nayak, S. Chattopadhyay, and S. Bhattacharyaa, Spectrochim. Acta A 84, 25 (2011).

    Article  ADS  Google Scholar 

  18. A. Ray, H. Pal, and S. Bhattacharya, Spectrochim. Acta A 117, 686 (2014).

    Article  ADS  Google Scholar 

  19. P. A. Liddell, J. P. Sumida, A. N. Macpherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore, and D. Gust, Photochem. Photobiol. 60, 537 (1994).

    Article  Google Scholar 

  20. R. Berera, G. F. Moore, I. Stokkum, G. Kodis, P. A. Liddell, M. Gervaldo, R. Grondelle, J. Kennis, D. Gust, T. A. Moore, and A. L. Moore, Photochem. Photobiol. Sci. 5, 1142 (2006).

    Article  Google Scholar 

  21. C. Constantin, Nanomedicine 5, 307 (2010).

    Article  Google Scholar 

  22. N. V. Tkachenko, A. Efimov, and H. Lemmetyinen, J. Porphyr. Phthalocyan. 15, 780 (2011).

    Article  Google Scholar 

  23. Y. Liu and J. Zhao, Chem. Commun. 48, 3751 (2012).

    Article  Google Scholar 

  24. P. Remon, C. P. Carvalho, C. Baleizão, M. N. Berberan-Santos, and U. Pischel, ChemPhysChem 14, 2717 (2013).

    Article  Google Scholar 

  25. A. S. Konev, A. F. Khlebnikov, T. G. Nikiforova, A. A. Virtsev, and H. Frauendorf, J. Org. Chem. 78, 2542 (2013).

    Article  Google Scholar 

  26. W. J. Shi, M. E. El-Khouly, K. Ohkubo, S. Fukuzumi, and D. K. Ng, Chemistry 19, 11332 (2013).

    Article  Google Scholar 

  27. E. Maligaspe, N. V. Tkachenko, N. K. Subbaiyan, R. Chitta, M. E. Zandler, H. Lemmetyinen, and F. D’Souza, J. Phys. Chem. A 113, 8478 (2009).

    Article  Google Scholar 

  28. L. Huang, X. Cui, B. Therrien, and J. Zhao, Chem. Eur. J. 19, 17472 (2013).

    Article  Google Scholar 

  29. F. D’Souza, P. M. Smith, M. E. Zandler, A. L. McCarty, M. Itou, Y. Araki, and O. Ito, J. Am. Chem. Soc. 126, 7898 (2004).

    Article  Google Scholar 

  30. Y. N. Yamakoshi, T. Yagami, S. Sueyoshi, and N. Miyata, J. Org. Chem. 61, 7236 (1996).

    Article  Google Scholar 

  31. M. E. Milanesio, M. G. AIvarez, V. Rivarola, J. J. Silber, and E. N. Durantini, Photochem. Photobiol. 81, 891 (2005).

    Article  Google Scholar 

  32. M. B. Ballatore, M. B. Spesia, M. E. Milanesio, and E. N. Durantini, Eur. J. Med. Chem. 83, 685 (2014).

    Article  Google Scholar 

  33. C. Zhou, Q. Liu, W. Xu, C. Wang, and X. Fang, Chem. Commun. 47, 2982 (2011).

    Article  Google Scholar 

  34. A. I. Kotelnikov, A. Y. Rybkin, E. A. Khakina, A. B. Kornev, A. V. Barinov, N. S. Goryachev, A. V. Ivanchikhina, A. S. Peregudov, V. M. Martynenko, and P. A. Troshin, Org. Biomol. Chem. 11, 4397 (2013).

    Article  Google Scholar 

  35. A. I. Kotel’nikov, A. Yu. Rybkin, N. S. Goryachev, A. Yu. Belik, A. B. Kornev, and P. A. Troshin, Dokl. Phys. Chem. 452, 229 (2013).

    Article  Google Scholar 

  36. A. V. Barinov, N. S. Goryachev, D. A. Poletaeva, A. Yu. Rybkin, A. B. Kornev, P. A. Troshin, F. I. Shmitt, G. Renger, G. I. Eikhler, and A. I. Kotel’nikov, Nanotechnol. Russ. 7, 409 (2012).

    Article  Google Scholar 

  37. R. Sjöback, J. Nygren, and M. Kubista, Spectrochim. Acta A 51, L7 (1995).

    Article  ADS  Google Scholar 

  38. M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., pp. 233–234, 351 (2002).

    Google Scholar 

  39. G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. Veggel, J. Phys. Chem. A 107, 2483 (2003).

    Article  Google Scholar 

  40. D. Magde, R. Wong, and P. G. Seybold, Photochem. Photobiol. 75, 327 (2002).

    Article  Google Scholar 

  41. E. Gandin, Y. Lion, and A. van de Vorst, Photochem. Photobiol. 37, 271 (1983).

    Article  Google Scholar 

  42. A. B. Kornev, E. A. Khakina, S. I. Troyanov, A. A. Kushch, D. G. Deryabin, A. S. Peregudov, A. Vasilchenko, V. M. Martynenko, and P. A. Troshin, Chem. Commun. 48, 5461 (2012).

    Article  Google Scholar 

  43. Th. Förster, Ann. Phys. (N.Y.) 2, 55 (1948).

    Article  Google Scholar 

  44. V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 124, 123 (1959).

    Google Scholar 

  45. R. A. Marcus and N. Sutin, Biochem. Biophys. Acta 811, 265 (1985).

    Google Scholar 

  46. A. I. Kotel’nikov, Biofizika 38, 228 (1993).

    Google Scholar 

  47. C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and P. L. Dutton, Nature 355, 796 (1992).

    Article  ADS  Google Scholar 

  48. H. B. Gray, J. R. Winkler, K. M. Kadish, K. M. Smith, and R. Guilard, Bioinorg. Bioorg. Chem. 11, 63 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kotel’nikov.

Additional information

Original Russian Text © A.I. Kotel’nikov, A.Yu. Rybkin, N.S. Goryachev, A.Yu. Belik, P.A. Troshin, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 3, pp. 397–403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotel’nikov, A.I., Rybkin, A.Y., Goryachev, N.S. et al. Spectral Properties and Photodynamic Activity of Complexes of Polycationic Derivative of Fullerene C60 with Xanthene Dye Fluorescein. Opt. Spectrosc. 120, 379–385 (2016). https://doi.org/10.1134/S0030400X16030152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16030152

Keywords

Navigation