Skip to main content
Log in

An imaging Fourier transform spectroradiometer with a multi-element photodetector for the spectral range of 7–14 μm

  • Geometrical and Applied Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The construction and principle of operation of a imaging Fourier transform infrared spectroradiometer (FTIR spectrometer) equipped with a cooled 32-area photodetector designed for spectral analysis of open atmospheric paths are considered. The main technical characteristics of the Fourier spectrometer are reported. The technique of visualization of the detected vapor cloud is described. The results of field experiments using the imaging FTIR spectrometer are shown. Based on these results, the dynamics of motion of the cloud of material has been investigated, its angular and linear velocities have been estimated, and data on propagation of the cloud of material and change in its angular sizes in air have been obtained. A technique for analyzing data provided by two FTIR spectrometers is given, based on which one can estimate the size of the cloud and the distance to it from each device. It is shown that the results of detection of the cloud of material by the imaging FTIR spectrometer can be used to predict the propagation of material under study in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Morozov and S. I. Svetlichnyi, Principles of Fourier Spectroradiometry, 2nd ed. (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  2. K. I. Zaitsev, A. A. Gavdush, V. E. Karasik, and S. O. Yurchenko, Vestn. Mosk. Tech. Univ., Ser. Estestv. Nauki, No. 3 (54), 69 (2014).

    Google Scholar 

  3. K. V. Glagolev, Ig. S. Golyak, Il. S. Golyak, A. A. Esakov, V. N. Kornienko, A. N. Morozov, S. E. Tabalin, I. V. Kochikov, and S. I. Svetlichnyi, Opt. Spectrosc. 110, 449 (2011).

    Article  ADS  Google Scholar 

  4. V. A. Vagin, M. A. Gershun, G. N. Zhizhin, and K. I. Tarasov, in Aperture Spectral Instruments, Ed. by K. I. Tarasov (Nauka, Moscow, 1988) [in Russian].

  5. S. K. Dvorak, V. N. Kornienko, I. V. Kochikov, M. V. Lelkov, A. N. Morozov, V. A. Pozdnyakov, S. I. Svet-lichnyi, and S. E. Tabalin, Opt. Spectrosc. 93, 970 (2002).

    Article  ADS  Google Scholar 

  6. A. N. Morozov, S. I. Svetlichnyi, and S. E. Tabalin, Usp. Sovrem. Radioelektron., No. 8, 34 (2007).

    Google Scholar 

  7. S. K. Dvoruk, V. N. Kornienko, I. V. Kochikov, M. V. Lelkov, A. N. Morozov, M. L. Pozdyshev, S. I. Svetlichnyi, and S. E. Tabalin, J. Opt. Technol. 73, 797 (2006).

    Article  ADS  Google Scholar 

  8. I. V. Kochikov, A. N. Morozov, I. L. Fufurin, and S. I. Svetlichnyi, Opt. Spectrosc. 106, 666 (2009).

    Article  ADS  Google Scholar 

  9. A. Beil, R. Daum, G. Matz, et al., Proc. SPIE 3493, 32 (1998).

    Article  ADS  Google Scholar 

  10. A. A. Balashov, V. A. Vagin, A. I. Khorokhorin, V. V. Kradetskii, A. N. Morozov, I. L. Fufurin, and M. A. Shilov, Prib. Tekh. Eksp., No. 3, 142 (2013).

    Google Scholar 

  11. A. N. Morozov, S. I. Svetlichnyi, S. E. Tabalin, and I. L. Fufurin, J. Opt. Technol. 80, 495 (2013).

    Article  Google Scholar 

  12. A. N. Morozov, I. V. Kochikov, A. V. Novgorodskaya, A. A. Sologub, and I. L. Fufurin, Komp. Opt. 39, 614 (2015).

    Article  Google Scholar 

  13. J. R. Dupuis, D. J. Mansur, J. R. Engel, R. Vaillancourt, L. Todd, and K. Mottus, Proc. SPIE—Int. Soc. Opt. Eng. 7304, 73040P (2008). doi 10.1117/12.819117

    Google Scholar 

  14. I. S. Golyak, I. S. Golyak, A. O. Karfidov, P. A. Korolev, A. N. Morozov, A. I. Mironov, M. A. Strokov, S. E. Tabalin, and I. L. Fufurin, Prib. Tekh. Eksp., No. 6, 119 (2014).

    Google Scholar 

  15. A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Phys. Dokl. 60, 388 (2015).

    Article  ADS  Google Scholar 

  16. M. Kastek, T. Piatkowski, and P. Trzaskawka, Metrol. Meas. Syst. 18, 607 (2011).

    Article  Google Scholar 

  17. W. Stremme, A. Krueger, R. Harig, et al., Atmos. Meas. Tech. 5, 275 (2012).

    Article  Google Scholar 

  18. A. Boiko, R. Sadovnikov, P. Shlygin, A. Pozvonkov, A. Samorodov, D. Tyurin, A. Morozov, S. Tabalin, and I. Fufurin, RF Patent No. 2478995 (2011).

  19. S. V. Bashkin, A. Yu. Boiko, V. N. Kornienko, I. V. Kochikov, M. V. Lel’kov, A. I. Mironov, A. N. Morozov, A. A. Pozvonkov, A. S. Samorodov, S. I. Svetlichnyi, S. E. Tabalin, I. L. Fufurin, and P. E. Shlygin, Vestn. Mosk. Tekh. Univ., Ser. Estestv. Nauki, No. 2, 51 (2016).

    Google Scholar 

  20. E. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles, Pure and Applied Optics (Wiley, New York, 1979; Mir, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bashkin.

Additional information

Original Russian Text © S.V. Bashkin, A.O. Karfidov, V.N. Kornienko, M.V. Lel’kov, A.I. Mironov, A.N. Morozov, S.I. Svetlichnyi, S.E. Tabalin, I.L. Fufurin, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 3, pp. 485–491.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashkin, S.V., Karfidov, A.O., Kornienko, V.N. et al. An imaging Fourier transform spectroradiometer with a multi-element photodetector for the spectral range of 7–14 μm. Opt. Spectrosc. 121, 449–454 (2016). https://doi.org/10.1134/S0030400X16090058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16090058

Navigation