Skip to main content
Log in

Emission properties of apokamp discharge at atmospheric pressure in air, argon, and helium

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Emission spectra of the plasma jet of apokamp discharge in air, helium, and argon are studied. Apokamp at atmospheric pressure is formed in the areas of strengthening of the electric field near the bends in the channel of the pulse-periodic discharge and is directed perpendicularly to the discharge channel. Apokamp consists of a bright narrow “appendage” connected with the discharge channel and with the diffuse jet emerging from the channel. It is shown that, in helium, the emission of the diffuse part of apokamp is dominated by N2 and N2 +, while emission of the “appendage” display lines and bands of He, N2, N2 +, O, and OH. In argon, emission spectra of the diffuse part of the plasma jets contain not only N2 and N2 +, but also Ar lines. It is assumed that the surrounding air plays an important role in the formation of the diffuse part of apokamp in helium and argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998).

    Article  ADS  Google Scholar 

  2. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, von T. Woedtke, R. Brandenburg, T. von dem Hagen, and K.-D. Weltmann, J. Phys. D 44, 013002 (2011). doi 10.1088/0022-3727/44/1/013002

    Article  ADS  Google Scholar 

  3. O. V. Penkov, M. Khadem, W.-S. Lim, and D.-E. Kim, J. Coat. Technol. Res. 12, 225 (2015). doi 10.1007/s11998-014-9638-z

    Article  Google Scholar 

  4. J. Winter, R. Brandenburg, and K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015). doi 10.1088/0963-0252/24/6/064001

    Article  ADS  Google Scholar 

  5. L. Lin and Q. Wang, Plasma Chem. Plasma Process. 35, 925 (2015). doi 10.1007/s11090-015-9640-y

    Article  Google Scholar 

  6. X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Rep. 630, 1 (2016). doi 10.1088/0963-0252/12/1/307

    Article  ADS  MathSciNet  Google Scholar 

  7. E. A. Sosnin, V. A. Panarin, V. S. Skakun, V. F. Tarasenko, D. S. Pechenitsin, and V. S. Kuznetsov, Tech. Phys. 61, 789 (2016). doi 10.1134/S1063784216050224

    Article  Google Scholar 

  8. X. Zhang, D. Liu, R. Zhou, Y. Song, Y. Sun, Q. Zhang, J. Niu, H. Fan, and S.-Z. Yang, Appl. Phys. Lett. 104, 043702 (2014). doi 10.1063/1.4863204

    Article  ADS  Google Scholar 

  9. J. Y. Kim, D.-H. Lee, J. Ballato, W. Cao, and S.-O. Kim, Appl. Phys. Lett. 101, 224101 (2012). doi 10.1063/1.4768922

    Article  ADS  Google Scholar 

  10. K. Malecha, Sens. Actuators B 181, 486 (2013). doi 10.1016/j.snb.2013.01.094

    Article  Google Scholar 

  11. E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002).

    Article  ADS  Google Scholar 

  12. X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. K. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012). doi 10.1088/0022-3727/45/16/165205

    Article  ADS  Google Scholar 

  13. J. R. Roth, D. M. Sherman, R. B. Gadri, F. Karakaya, Z. Chen, T. C. Montie, K. Kelly-Wintenberg, and P. P.-Y. Tsai, IEEE Trans. Plasma Sci. 28, 56 (2000). doi 10.1109/27.842864

    Article  ADS  Google Scholar 

  14. Yu. S. Akishev, M. E. Grushin, and N. I. Trushkin, RF Patent No. 2398589 (2010).

    Google Scholar 

  15. A. Sarani, A. Y. Nikiforov, and C. Leys, Phys. Plasmas 17, 063504 (2010). doi 10.1063/1.3439685

    Article  ADS  Google Scholar 

  16. C. Cheng, S. Jie, X. De-Zhi, X. Hong-Bing, L. Yan, F. Shi-Dong, M. Yue-Dong, and C. K. Paul, Chin. Phys. B 23, 075204 (2014). doi 10.1088/1674-1056/23/7/075204

    Article  ADS  Google Scholar 

  17. Y. Ch. Hong and H. S. Uhm, Phys. Plasmas 14, 053503 (2007). doi 10.1063/1.2736945

    Article  ADS  Google Scholar 

  18. A. N. Korbut, V. A. Kelman, Yu. V. Zhmenyak, and M. S. Klenovskii, Opt. Spectrosc. 116, 919 (2014). doi 10.1134/S0030400X14040146

    Article  ADS  Google Scholar 

  19. T. Shao, W. Yang, C. Zhang, Z. Fang, Y. Zhou, and E. Schamiloglu, Eur. Phys. Lett. 107, 65004 (2014). doi 10.1209/0295-5075/107/65004

    Article  ADS  Google Scholar 

  20. V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, E. A. Sosnin, and V. F. Tarasenko, Russ. Phys. J. 59, 707 (2010).

    Article  Google Scholar 

  21. E. A. Sosnin, V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, V. F. Tarasenko, and E. Kh. Baksht, JETP Lett. 103, 761 (2016).

    Article  ADS  Google Scholar 

  22. E. A. Sosnin, A. A. Panarin, V. S. Skakun, and V. F. Tarasenko, Atmos. Oceanic Phys. 29, 855 (2016). doi 10.15372/AOO20161009

    Google Scholar 

  23. D. Siingh, R. P. Singh, S. Kumar, T. Dharmaraj, A. K. Singh, A. K. Singh, M. N. Patil, and S. Singh, J. Atm. Solar-Terr. Phys. 134, 78 (2015). doi 10.1016/j.jastp.2015.10.001

    Article  ADS  Google Scholar 

  24. X. L. Deng, A. Yu. Nikiforov, P. Vanraes, and Ch. Leys, J. Appl. Phys. 113, 023305 (2013). doi 10.1063/1.4774328

    Article  ADS  Google Scholar 

  25. Y. Akishev, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, J. Phys.: Conf. Ser. 257, 012014 (2010). doi 10.1088/1742-6596/257/1/012014

    Google Scholar 

  26. A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  27. J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005). doi 10.1063/1.1800011

    Article  ADS  Google Scholar 

  28. K.-P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1979).

    Book  Google Scholar 

  29. S. K. Searles and G. A. Hart, Appl. Phys. Lett. 25, 79 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panarin.

Additional information

Original Russian Text © A.A. Panarin, V.S. Skakun, E.A. Sosnin, V.F. Tarasenko, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 2, pp. 185–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panarin, A.A., Skakun, V.S., Sosnin, E.A. et al. Emission properties of apokamp discharge at atmospheric pressure in air, argon, and helium. Opt. Spectrosc. 122, 168–174 (2017). https://doi.org/10.1134/S0030400X17020217

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17020217

Navigation