Skip to main content
Log in

The Effect of Relativistic Interactions on the Spectral Characteristics of the Ground State of Carbon Monoxide

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using high-precision nonempirical methods of modern quantum chemistry, the effect of the weak relativistic interactions on the potential energy and the permanent dipole moment of the ground electronic state of the CO molecule is studied. The relativistic energy is calculated by the following three optional methods: within the first-order perturbation theory using the Cowan–Griffin operator containing the sum of the mass-velocity and Darwin corrections, within the framework of the approximate Douglas–Kroll–Hess scalar Hamiltonian, and the most rigid “four-component” relativistic Dirac–Coulomb–Gaunt Hamiltonian. The relativistic correction obtained by different methods agrees within a few percents and equals about 55–60 cm–1 in the region of an equilibrium internuclear distance of \({{R}_{e}} = 1.128\) Å. The addition of the relativistic correction decreases the equilibrium bond length by about 0.0002 Å. The magnitude of the Lamb shift estimated by the semiempirical scaling of the one-electron Darwin’s term does not exceed several inverse centimeters near \({{R}_{e}}\). The relativistic correction to the dipole moment function is in the range from –0.001 to +0.003 D, which does not exceed 1% of the nonrelativistic component of the dipole moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. A. M. Dirac, Nature (London, U.K.) 139 (3512), 323 (1937).

    Article  ADS  Google Scholar 

  2. J. P. Uzan, Rev. Mod. Phys. 75, 403 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. G. Karshenboim and E. Peik, EPJ Spec. Top. 163, 1 (2008).

    Google Scholar 

  4. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963; Pergamon, Oxford, New York, 1972).

  5. P. Molaro, M. Centurion, J. B. Whitmore, et al., Astron. Astrophys. 555, A68 (2013).

    Article  Google Scholar 

  6. M. G. Kozlov and S. A. Levshakov, Ann. Phys. 525, 452 (2013).

    Article  Google Scholar 

  7. E. A. Konovalova, M. G. Kozlov, and R. T. Imanbaeva, Phys. Rev. A 90, 042512 (2014).

    Article  ADS  Google Scholar 

  8. V. V. Meshkov, A. V. Stolyarov, A. V. Ivanchik, and D. A. Varshalovich, JETP Lett. 83, 303 (2006).

    Article  ADS  Google Scholar 

  9. T. Rosenband, D. B. Hume, P. O. Schmidt, et al., Science (Washington, DC, U. S.) 319 (5871), 1808 (2008).

    Article  ADS  Google Scholar 

  10. S. Blatt, A. D. Ludlow, G. K. Campbell, et al., Phys. Rev. Lett. 100, 140801 (2008).

    Article  ADS  Google Scholar 

  11. R. Barvainis, L. Tacconi, R. Antonucci, et al., Nature (London, U.K.) 371 (6498), 586 (1994).

    Article  ADS  Google Scholar 

  12. P. P. Papadopoulos, H. J. A. Röttgering, P. P. van der Werf, et al., Astrophys. J. 528, 626 (2000).

    Article  ADS  Google Scholar 

  13. F. Combes, M. Rex, T. D. Rawle, et al., Astron. Astrophys. 538, L4 (2012).

    Article  ADS  Google Scholar 

  14. S. A. Levshakov, F. Combes, F. Boone, et al., Astron. Astrophys. 540, L9 (2012).

    Article  ADS  Google Scholar 

  15. D. DeMille, S. Sainis, J. Sage, et al., Phys. Rev. Lett. 100, 043202 (2008).

    Article  ADS  Google Scholar 

  16. T. Zelevinsky, S. Kotochigova, and J. Ye, Phys. Rev. Lett. 100, 043201 (2008).

    Article  ADS  Google Scholar 

  17. V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007).

    Article  ADS  Google Scholar 

  18. H. L. Bethlem and W. Ubachs, Faraday Discuss 142, 25 (2009).

    Article  ADS  Google Scholar 

  19. R. Bast, T. Saue, L. Visscher, et al., DIRAC, A Relativistic Ab Initio Electronic Structure Program, Release DIRAC15. http://www.diracprogram.org.

  20. K. G. Dyall, Theor. Chem. Acc. 115, 441 (2006).

    Article  Google Scholar 

  21. V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A 59, 230 (1999).

    Article  ADS  Google Scholar 

  22. H. J. Werner and P. J. Knowles, Theor. Chem. Acc. 78, 175 (1990).

    Article  Google Scholar 

  23. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  ADS  Google Scholar 

  24. A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002).

    Article  ADS  Google Scholar 

  25. D. S. Ranasinghe and G. A. Petersson, J. Chem. Phys. 138, 144104 (2003).

    Article  ADS  Google Scholar 

  26. H. J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

    Article  ADS  Google Scholar 

  27. H.-J. Werner, P. J. Knowles, G. Knizia, et al., MOLPRO, Version 2010.1, A Package of Ab Initio Programs (2010).

  28. H. J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985).

    Article  ADS  Google Scholar 

  29. P. Pyykkö, K. G. Dyall, A. G. Császár, et al., Phys. Rev. A 63, 024502 (2001).

    Article  ADS  Google Scholar 

  30. J. A. Coxon and P. G. Hajigeorgiou, J. Chem. Phys. 121, 2992 (2004).

    Article  ADS  Google Scholar 

  31. G. Li, I. E. Gordon, L. S. Rothman, et al., Astrophys. J. Suppl. 216, 15 (2015).

    Article  Google Scholar 

  32. S. R. Langhoff and C. W. Bauschlicher, Jr., J. Chem. Phys. 102, 5220 (1995).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank M.G. Kozlov and L.V. Skripnikov for the fruitful discussions. This work was supported by the Russian Foundation for Basic Research (project no. 17-32-50022-mol-nr). Calculations were carried out using the equipment of the Center for Collective Use Integrated System for Simulation and Data Processing of Mega-Class Research Facilities of the National Research Center Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Konovalova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalova, E.A., Demidov, Y.A. & Stolyarov, A.V. The Effect of Relativistic Interactions on the Spectral Characteristics of the Ground State of Carbon Monoxide. Opt. Spectrosc. 125, 470–475 (2018). https://doi.org/10.1134/S0030400X18100107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18100107

Keywords

Navigation