Skip to main content
Log in

Evolutionary Transformations of the Metazoan Body Plan: Genomic-Morphogenetic Correlations

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

This review summarizes literature data on phylogenomics, indicating genomic–morphogenetic correlations that determine the metazoan body plan and phenotypic complexity. Radical, macroevolutionary transformations of the bilaterian body plan, which correlate with duplications or losses of individual Hox genes of an ancestral cluster, or with its topological reorganization, are revealed. Regressive evolution is rather common in Metazoa; reduction and simplification of the genome and phenome occurred quite often in the evolution of metazoans. Since the system of cluster Hox genes has been shown to be the key regulatory node of genome–phenome relationships, regulating a wide range of developmental processes, as well as being the correlation node determining different evolutionary trajectories of various bilaterian taxa, it is a highly informative correlate and indicator of evolutionary changes of the body plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aboobaker, A.A. and Blaxter, M.L., The nematode story: Hox gene loss and rapid evolution, in Hox Genes: Studies from the 20th to the 21st Century, Deutsch, J.S., Ed., New York: Springer Science+Business Media, LLC Landes Bioscience, 2010, pp. 101–110.

  2. Ahlberg, P.E., Fossils, developmental patterning and the origin of tetrapods, in The New Panorama of Animal Evolution, Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M., Eds., Sofia: Pensoft Publ., 2003, pp. 45–54.

    Google Scholar 

  3. Albertin, C.B., Simakov, O., Mitros, T., et al., The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 2015, vol. 524, pp. 220–224.

    Article  Google Scholar 

  4. Aleoshin, V.V., Filogeniya bespozvonochnykh v svete molekulyarnykh dannykh: perspektivy zaversheniya filogenetiki kak Nauki (Phylogeny of Invertebrates in the Light of Molecular Data: Prospects for the Completion of Phylogenetics as a Science), Tr. Zool. Inst. Ross. Akad. Nauk, 2013, suppl. no. 2, pp. 9–38.

  5. Aleoshin, V.V. and Petrov, N.B., Regression in the evolution of Metazoa, Priroda, 2001, no. 7, pp. 62–70.

  6. Arnone, M.I., Byrne, M., and Martinez, P., Echinodermata, in Evolutionary Developmental Biology of Invertebrates, vol. 6: Deuterostomia, Wanninger, A., Ed., Springer-Verlag: Wien e a., 2015, pp. 1–58.

  7. Beloussov, L.V., Osnovy obshchei embriologii (Fundamentals of General Embryology), Moscow: Mosk. Gos. Univ., 2005.

  8. Benton, M.J. and Harper, D.A.T., Introduction to Paleobiology and the Fossil Records, Oxford: Wiley-Blackwell, 2009.

    Google Scholar 

  9. Berrill, N.J., The determination of size, in Analysis of Development, Willier, B.H., Weiss, P., and Hamburger, V., Eds., Philadelphia: Saunders Co., 1955, pp. 620–630.

    Google Scholar 

  10. Berrill, N.J., Growth, Development, and Pattern, San Francisco: Freeman, 1961.

    Google Scholar 

  11. Braun, K., Leubner, F., and Stach, T., Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea, Cladistics, 2019, pp. 1–42.

  12. Byrne, M., Martinez, P., and Morris, V., Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited, Evol. Dev., 2016, pp. 1–7. https://doi.org/10.1111/ede.12172

  13. Cameron, R.A., Rowen, L., Nesbitt, R., et al., Unusual gene order and organization of the sea urchin Hox cluster, J. Exp. Zool. B, 2006, vol. 306, pp. 45–47.

    Article  Google Scholar 

  14. Caputi, L., Borra, M., Andreakis, N., et al., SNPs and Hox gene mapping in Ciona intestinalis, BMC Genomics, 2008, vol. 9, p. 39.

    Article  Google Scholar 

  15. Carey, N., Junk DNA: A Journey through the Dark Matter of the Genome, Columbia Univ. Press, 2015.

    Book  Google Scholar 

  16. Carroll, S.B., Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution, Cell, 2008, vol. 134, pp. 25–36.

    Article  Google Scholar 

  17. Chang, E.S., Neuhof, M., Rubinstein, N.D., et al., Genomic insights into the evolutionary origin of Myxozoa within Cnidaria, Proc. Nat. Acad. Sci. U. S. A., 2015, vol. 112, no. 48, pp. 14912–14917.

    Article  Google Scholar 

  18. Chipman, A.D., Becoming segmented, in Perspectives on Evolutionary and Developmental Biology, Fusco, G., Ed., Padova: Padova Univ. Press, 2019, pp. 235–244.

    Google Scholar 

  19. Copley, R.R., The animal in the genome: comparative genomics and evolution, Phil. Trans. R. Soc. B, 2008. https://doi.org/10.1098/rstb.2008.2235

  20. Darbelay, F. and Duboule, D., Chapter Sixteen—Topological domains, metagenes, and the emergence of pleiotropic regulations at Hox loci, Curr. Topics Dev. Biol., 2016, vol. 116, pp. 299–314.

    Article  Google Scholar 

  21. David, B. and Mooi, R., How Hox genes can shed light on the place of echinoderms among the deuterostomes, EvoDevo, 2014, vol. 5, p. 22. http://www.evodevojournal.com/content/5/1/22.

    Article  Google Scholar 

  22. Davidson, E.H., The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, San Diego: Academic, 2006.

    Google Scholar 

  23. Delsuc, F., Brinkmann, H., Chourrout, D., and Philippe, H., Tunicates and not cephalochordates are the closest living relatives of vertebrates, Nature, 2006, vol. 439, pp. 965–968.

    Article  Google Scholar 

  24. Delsuc, F., Tsagkogeorga, G., Lartillot, N., and Philippe, H., Additional molecular support for the new chordate phylogeny, Genes, 2008, vol. 46, pp. 592–604.

    Article  Google Scholar 

  25. Delsuc, F., Philippe, H., Tsagkogeorga, G., et al., A phylogenomic framework and timescale for comparative studies of tunicates, BMC Biol., 2018, vol. 16, p. 39. https://doi.org/10.1186/s12915-018-0499-2

    Article  Google Scholar 

  26. Deutsch, J.S. and Mouchel-Vielh, E., Hox genes and the crustacean body plan, BioAssays, 2003, vol. 25, pp. 878–887.

    Article  Google Scholar 

  27. Dezaki, E.S., Yaghoobi, M.M., Taheri, E., et al., Differential expression of Hox and Notch genes in larval and adult stages of Echinococcus granulosus, Korean J. Parasitol., 2016, vol. 54, pp. 653–658.

    Article  Google Scholar 

  28. Duboule, D., Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony, Development, Suppl., 1994, pp. 135–142.

  29. Duboule, D., The rise and fall of Hox gene clusters, Development, 2007, vol. 134, pp. 2549–2560.

    Article  Google Scholar 

  30. Dunn, C.W. and Ryan, J.F., The evolution of animal genomes, Curr. Opin. Genet. Dev., 2015, vol. 35, pp. 25–32.

    Article  Google Scholar 

  31. Erwin, D.H., Early origin of the bilaterian developmental toolkit, Phil. Trans. R. Soc., vol. 364, pp. 2253–2261.

  32. Erwin, D.H. and Valentine, J.W., The Cambrian Explosion: The Construction of Animal Biodiversity, Greenwood Village, USA: Roberts and Co. Publ., Inc., 2013, p. 406.

    Google Scholar 

  33. Ferrier, D.E.K., Evolution of homeobox gene clusters in animals: the Giga-cluster and primary vs. secondary clustering, Front. Ecol. Evol., 2016, vol. 4. www.frontiersin.org 2016|Volume4|Article36.

  34. Ferrier, D.E.K., Space and time in Hox/ParaHox gene cluster evolution, in Perspectives on Evolutionary and Developmental Biology, Fusco, G., Ed., Padova: Padova Univ. Press, 2019, pp. 245–258.

    Google Scholar 

  35. Foox, J. and Siddall, M.E., The road to Cnidaria: history of phylogeny of the Myxozoa, J. Parasitol., 2015, vol. 101, pp. 269–274.

    Article  Google Scholar 

  36. Furuya, H., Hochberg, F.G., and Kazuhiko, T., Cell number and cellular composition in infusoriform larvae of Dicyemid mesozoans (phylum Dicyemida), Zool. Sci., 2004, vol. 21, pp. 877–889.

    Article  Google Scholar 

  37. Gibert, J.-M., Mouchel-Vielh, E., Queinnec, E., and Deutsch, J.S., Barnacle duplicate engrailed genes: divergent expression patterns and evidence for a vestigial abdomen, Evol. Dev., 2000, vol. 2, pp. 194–202.

    Article  Google Scholar 

  38. Goncalves e Silva, F.C., Evolutionary genomics: study of genes involved in animal adaptation. A proposal submitted to Faculty of Sciences of the University of Porto for fulfillment of degree of Master of Biochemistry, Universidade do Porto, 2015.

    Google Scholar 

  39. Gould, S.J., The Structure of Evolutionary Theory, Cambridge: Belknap Press of Harvard Univ. Press, 2002.

    Book  Google Scholar 

  40. Grant, V., Organismic Evolution, San Francisco: Freeman and Co., 1977.

    Google Scholar 

  41. Gu, J.-L., Chen, S.-X., Dou, T.-H., et al., Hox genes from the parasitic flatworm Schistosoma japonicum, Genomics, 2012, vol. 99, pp. 59–65.

    Article  Google Scholar 

  42. Gunbin, K.V., Suslov, V.V., and Kolchanov, N.A., Aromorphoses and adaptive molecular evolution, Vestn. VOGiS, 2007, vol. 11, pp. 373–399.

    Google Scholar 

  43. Halanych, K.M., How our view of animal phylogeny was reshaped by molecular approaches: lessons learned, Org. Diversity Evol., 2016, vol. 16, pp. 319–328.

    Article  Google Scholar 

  44. Hara, Y., Yamaguchi, M., Akasaka, K., et al., Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus, Dev. Genes Evol., 2006, vol. 216, pp. 797–809.

    Article  Google Scholar 

  45. Hoeg, J.T., Deutsch, J., Chan, B.K.K., and Semmler Le, H., “Crustacea:” Cirripedia, in Evolutionary Developmental Biology of Invertebrates, vol. 4: Ecdysozoa II: “Crustacea,” Wanninger, A., Ed., 2015, pp. 153–181.

  46. Holland, P.W.H., Did homeobox gene duplications contribute to the Cambrian explosion?, Zool. Lett., 2015, vol. 1, p. 1. https://doi.org/10.1186/s40851-014-0004-x

    Article  Google Scholar 

  47. Holland, L.Z., Tunicates, Curr. Biol., 2016, vol. 26, pp. R146–R152.

    Article  Google Scholar 

  48. Holland, N.D., Holland, L.Z., and Holland, P.W.H., Scenarios for the making of vertebrates, Nature, 2015, vol. 520, pp. 450–455.

    Article  Google Scholar 

  49. Ikuta, T., Evolution of invertebrate Deuterostomes and Hox/ParaHox genes, Genom. Proteom. Bioinform., 2011, vol. 9, pp. 77–96.

    Article  Google Scholar 

  50. Ikuta, T., Yoshida, N., Satoh, N., and Saiga, H., Ciona intestinalis Hox gene cluster: its dispersed structure and residual collinear expression in development. Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 15118–15123.

    Article  Google Scholar 

  51. Inoue, J., Nakashima, K., and Satoh, N., ORTHOSCOPE analysis reveals the presence of the cellulose synthase gene in all tunicate genomes but not in other animal genomes. Genes, 2019, vol. 10, p. 294. https://doi.org/10.3390/genes10040294

    Article  Google Scholar 

  52. Isaeva, V.V., Heterochronies, heterotopies, and cell resources of development in ontogenetic and evolutionary transformation, Paleontol. J., 2015, vol. 49, no. 14, pp. 1530–1537.

    Article  Google Scholar 

  53. Isaeva, V.V., Evolutionary gains and losses in Bilateria, Paleontol. J., 2016, vol. 50, pp. 1477–1485.

    Article  Google Scholar 

  54. Isaeva, V.V., Genomic-morphogenetic correlations and evolutionary trajectories of Bilateria, Paleontol. J., 2018, vol. 52, no. 14, pp. 1655–1662.

    Article  Google Scholar 

  55. Isaeva, V.V. and Golubev, A.G., The tunicates, our closest invertebrate relatives, Biosfera, 2017, vol. 9, no. 3, pp. 242–260.

    Google Scholar 

  56. Isaeva, V.V. and Shukalyuk, A.I., Kolonial’nye kornegolovye rakoobraznye. Crustacea: Rhizocephala. Bespoloe razmnozhenie, stvolovye kletki, reproduktivnaya strategiya (Colonial Rhizocephala. Crustacea: Rhizocephala. Asexual Reproduction, Stem Cells, and Reproductive Strategy), Moscow: Nauka, 2007.

  57. Isaeva, V.V., Ozernyuk, N.D., and Rozhnov, S.V., Evidence for evolutionary changes in ontogeny: paleontological, comparative-morphological, and molecular aspects. Biol. Bull. (Moscow), 2013, vol. 40, no. 3, pp. 243–252.

    Article  Google Scholar 

  58. Koonin, E.V., The Logic of Chance: The Nature and Origin of Biological Evolution, Upper Saddle River, NJ: Pearson Education Inc., 2012.

    Google Scholar 

  59. Lane, N., The Vital Question: Energy, Evolution, and the Origin of Complex Life, Profile Book, 2015.

    Google Scholar 

  60. Lang, D. and Rensing, S.A., The evolution of transcriptional regulation in the viridiplantae and its correlation with morphological complexity, in Evolutionary Transitions to Multicellular Life. Principles and Mechanisms, Ruiz-Trillo, I. and Nedelcu, A.M., Eds., Dordrecht e a.: Springer Science+Business Media, 2015, pp. 301–334.

  61. Lowe, C.J., Clarke, D.N., Medeiros, D.M., Rokhsar, D.S., and Gerhart, J., The deuterostome context of chordate origins, Nature, 2015, vol. 520, pp. 456–465.

    Article  Google Scholar 

  62. Lu, T.-M., Kanda, M., Satoh, N., and Furuya, H., The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution, Zool. Lett., 2017, vol. 3, p. 6. https://doi.org/10.1186/s40851-017-0068-5

    Article  Google Scholar 

  63. Martynov, A.V., Ontogenetic systematics: the synthesis of taxonomy, phylogenetics, and evolutionary developmental biology, Paleontol. J., 2012, vol. 46, pp. 833–864.

    Article  Google Scholar 

  64. McNamara, K.J., Changing times, changing places: heterochrony and heterotopy, Paleobiology, 2002, vol. 28, pp. 551–558.

    Article  Google Scholar 

  65. Metzger, M.J., Villalba, A., Carballal, M.J., et al., Widespread transmission of independent cancer lineages within multiple bivalve species, Nature, 2016. https://doi.org/10.1038/nature18599

  66. Mikhailov, K.V., Konstantinova, A.V., Nikitin, M.A., et al., The origin of Metazoa: a transition from temporal to spatial cell differentiation, Bioessays, 2009, vol. 31, pp. 758–768.

    Article  Google Scholar 

  67. Minelli, A., The Development of Animal Form. Ontogeny, Morphology, and Evolution, Cambridge e a: Cambridge Univ. Press, 2003.

  68. Minelli, A., EvoDevo and its significance for animal evolution and phylogeny, in Evolutionary Developmental Biology of Invertebrates, vol. 1: Introduction, Non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha, Wanninger, A., Ed., Wien e a.: Springer, 2015a, pp. 1–24.

  69. Minelli, A., Morphological misfits and the Architecture of Development, in Macroevolution: Explanation, Interpretation and Evidence, Serrelli, E. and Gontier, N., Eds., Heidelberg: Springer, 2015b, pp. 329–343.

    Google Scholar 

  70. Mouchel-Vielh, E., Rigolot, C., Gibert, J.-M., and Deutsch, J.S., Molecules and the body plan: the Hox genes of the cirripedes (Cruastacea), Mol. Phylogenet. Evol., 1998, vol. 9, pp. 382–389.

    Article  Google Scholar 

  71. Muller, G.B., An evolutionary biology for the 21st century, in Perspectives on Evolutionary and Developmental Biology, Fusco, G., Ed., Padova: Padova University Press, 2019, pp. 23–40.

    Google Scholar 

  72. Ogura, T. and Busch, W., Genotypes, networks, phenotypes: moving toward plant systems genetics, Annu. Rev. Cell Dev. Biol., 2016, vol. 32, pp. 103–126.

    Article  Google Scholar 

  73. Olson, P.D., Zarowiecki, M., Kiss, F., and Brehm, K., Cestode genomics—progress and prospects for advancing basic and applied aspects of flatworm biology, Parasite Immunol., 2012, vol. 34, nos. 2–3.

  74. Overstreet, R.M. and Hochberg, F.G., Dicyemida of the Gulf of Mexico, with comments on the Orthonectida, in Gulf of Mexico—Origins, Waters, and Biota. Biodiversity, Felder D.L., Camp D.K. Eds., College Station, Texas: Texas Univ. Press, 2009, pp. 523–528.

    Google Scholar 

  75. Panchin, A.Y., Aleoshin, V.V., and Panchin, Y.V., From tumors to species: a SCANDAL hypothesis, Biol. Direct., 2019, vol. 14, p. 3. https://doi.org/10.1186/s13062-019-0233-1

    Article  Google Scholar 

  76. Papageorgiou, S., Hox gene collinearity: from A–P patterning to radially symmetric animals, Curr. Genomics, 2016, vol. 17, pp. 444–449.

    Article  Google Scholar 

  77. Pascual-Anaya, J., D’Aniello, S., Kuratani, S., and Garcia-Fernandez, J., Evolution of Hox gene clusters in deuterostomes, BMC Dev. Biol., 2013, vol. 13, p. 26. http:// www.biomedcentral.com/1471-213X/13/26.

    Article  Google Scholar 

  78. Peter, I.S. and Davidson, E.H., Evolution of gene regulatory networks controlling body plan development, Cell, 2011, vol. 144, pp. 970–985.

    Article  Google Scholar 

  79. Peterson, K.J. and Davidson, E.H., Regulatory evolution and the origin of the bilaterians, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 4430–4433.

    Article  Google Scholar 

  80. Peterson, K.J. and Eernisse, D.J., The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas, Org. Diversity Evol., 2016, vol. 16, pp. 401–418.

    Article  Google Scholar 

  81. Pierce, R.J., Wu, W., Hirai, H., et al., Evidence of a dispersed Hox genes cluster in the platyhelminth parasite Schistosoma mansoni, Mol. Biol. Evol., 2005, vol. 22, pp. 23–39.

    Article  Google Scholar 

  82. Rinkevich, B., Stem cells: autonomy interactors that emerge as causal agents and legitimate units of selection, in Stem Cells in Marine Organisms, Rinkevich, B. and Matranga, V., Eds., Dordrecht: Springer, 2009, pp. 1–20.

    Book  Google Scholar 

  83. Roberts, A., The Incredible Unlikeliness of Being. Evolution and Making of Us, 2014.

    Google Scholar 

  84. Rozhnov, S.V., Development of the trophic structure of Vendian and early Paleozoic marine communities, Paleontol. J., 2009, vol. 43, no. 11, pp. 1364–1367.

    Article  Google Scholar 

  85. Rozhnov, S.V., From Vendian to Cambrian: the beginning of morphological disparity of modern metazoan phyla, Russ. J. Dev. Biol., 2010a, vol. 41, no. 6, pp. 357–368.

    Article  Google Scholar 

  86. Rozhnov, S.V., Combinatorial model for the formation of body plans in higher metazoan taxa: paleontological insight, Paleontol. J., 2010b, vol. 44, no. 12, pp. 1500–1508.

    Article  Google Scholar 

  87. Rozhnov, S.V., The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny. Biol. Bull. (Moscow), 2012a, vol. 39, no. 2, pp. 162–171.

    Article  Google Scholar 

  88. Rozhnov, S.V., Development of symmetry and asymmetry in the early evolution of the echinoderms, Paleontol. J., 2012b, vol. 46, no. 8, pp. 780–792.

    Article  Google Scholar 

  89. Rozhnov, S.V., Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality, Nat. Sci., 2014, vol. 6, no. 4, pp. 171–183. https://doi.org/10.4236/ns.2014.64021

    Article  Google Scholar 

  90. Rozhnov, S.V., Aboral nervous system in two Ordovician crinoids: reconstruction and comparison of Baltic Pentamerocrinus Jaekel and Grammocrinus Eichwald, Paleontol. J., 2016, vol. 50, no. 2, pp. 163–173.

    Article  Google Scholar 

  91. Ruppert, E.E., Introduction: microscopic anatomy of the notochord, heterochrony, and chordate evolution, in Microscopic Anatomy of Invertebrates, vol. 15: Hemichordata, Chaetognatha, and the Invertebrate Chordata, Harrison, F.W. and Ruppert, E.E., Eds., Wiley-Liss, Inc., 1997, pp. 1–13.

  92. Satoh, N., Rokhsar, D., and Nishikawa, T., Chordate evolution and the three-phylum system, Proc. R. Soc. B, 2014, vol. 281, p. 1729. https://doi.org/10.1098/rspb.2014.17292014

    Article  Google Scholar 

  93. Schiffer, P.H., Robertson, H.E., and Telford, M.J., Molecular data from Orthonectid worms show they are highly degenerate members of phylum Annelida not phylum Mesozoa, bioRxiv, 2017. https://doi.org/10.1101/23554910.1101/235549

  94. Schmidt-Nielsen, K., Scaling: Why Is Animal Size So Important?, New York: Cambridge Univ. Press, 1984.

    Book  Google Scholar 

  95. Seo, H.-C., Edvardsen, R.B., Maeland, A.D., et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica, Nature, 2004, vol. 431, pp. 67–71.

    Article  Google Scholar 

  96. Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), Moscow, 1939. (Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), 2nd ed., Moscow: Knizhnyi dom LIBROKOM, 2012.

  97. Shapiro, J.A., Nothing in evolution makes sense except in the light of genomics: Read–Write Genome evolution as an active biological process, Biology, 2016, vol. 5, p. 27. https://doi.org/10.3390/biology5020027

    Article  Google Scholar 

  98. Shukalyuk, A.I. and Isaeva, V.V., Molecular signature and sub-cellular machinery of metazoan gametogenic stem cells, in Recent Advances in Germ Cells Research, Perrote, A., Ed., Nova Science Publ. Inc., 2013, pp. 1–40.

    Google Scholar 

  99. Simakov, O. and Kawashima, T., Independent evolution of genomic characters during major metazoan, Transit. Dev. Biol., 2017, vol. 427, pp. 179–192.

    Article  Google Scholar 

  100. Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia University Press, 1944.

    Google Scholar 

  101. Slyusarev, G.S. and Starunov, V.V., The structure of the muscular and nervous systems of the female Intoshia linei (Orthonectida), Org. Diversity Evol., 2015. https://doi.org/10.1007/s13127-015-0246-2

  102. Smith, A.B., Deuterostomes in a twist: the origins of a radical new body plan, Evol. Dev., 2008, vol. 10, pp. 493–503.

    Article  Google Scholar 

  103. Smith, F.W., Boothby, T.C., Giovannini, I., et al., The compact body plan of Tardigrades evolved by the loss of a large body region, Curr. Biol., 2016, vol. 26, pp. 224–229.

    Article  Google Scholar 

  104. Sommer, R.J., Nematoda, in Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., Wien e a.: Springer, 2015, vol. 3, pp. 15–34.

  105. Srivastava, M.A., Comparative genomics perspective on the origin of multicellularity and early animal evolution, in Evolutionary Transitions to Multicellular Life. Principles and Mechanisms, Ruiz-Trillo, I. and Nedelcu, A.M., Eds., Dordrecht e a.: Springer Science+Business Media, 2015, pp. 269–300.

  106. Stolfi, A. and Brown, F.D., Tunicata, in Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., Wien: Springer, 2015, vol. 6, pp. 135–204.

    Google Scholar 

  107. Technau, U. and Genikhovich, G., On the evolution of bilaterality, Development, 2017, vol. 144, pp. 3392–3404.

    Article  Google Scholar 

  108. Technau, U., Genikhovich, G., and Kraus, J.E.M., Cnidaria, in Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., Wien e a.: Springer, 2015, vol. 1, pp. 115–163.

  109. Temereva, E.N. and Neklyudov, B.V., A new phoronid species, Phoronis savinkini sp. n., from the South China Sea and an analysis of the taxonomic diversity of Phoronida, Biol. Bull. (Moscow), 2018, vol. 45, no. 7, pp. 1–23.

    Article  Google Scholar 

  110. Tschopp, P. and Duboule, D., A genetic approach to the transcriptional regulation of Hox gene clusters, Annu. Rev. Genet., 2011, vol. 45, pp. 145–166.

    Article  Google Scholar 

  111. Van Valen, L.M. and Maiorana, V.C., HeLa, a new microbial species, Evol. Theory, 1991, vol. 10, pp. 71–74.

    Google Scholar 

  112. Wanninger, A. and Wollesen, T., Mollusca, in Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., Wien e a.: Springer, 2015, vol. 2, pp. 103–153.

  113. Williams, G.C., Natural Selection: Domains, Levels, and Challenges, New York: Oxford Univ. Press, 1992.

    Google Scholar 

  114. Zandvakili, A. and Gebelein, B., Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan, J. Dev. Biol., 2016, vol. 4, p. 16. https://doi.org/10.3390/jdb4020016

    Article  Google Scholar 

  115. Zimmer, C., Parasite Rex: Inside the Bizarre World of Nature’s Most Dangerous Creations, 2000.

  116. Zrzavy, J., The interrelationships of metazoan parasites: a review of phylum and higher-level hypotheses from recent morphological and molecular phylogenetic analyses, Folia Parasitol., 2001, vol. 48, pp. 81–103.

    Article  Google Scholar 

  117. Zverkov, O.A., Mikhailov, K.V., Isaev, S.V., et al., Dicyemida and Orthonectida: Two stories of body plan simplification, Front. Genet., 2019. https://doi.org/10.3389/fgene.2019.00443

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Isaeva or S. V. Rozhnov.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, V.V., Rozhnov, S.V. Evolutionary Transformations of the Metazoan Body Plan: Genomic-Morphogenetic Correlations. Paleontol. J. 55, 811–824 (2021). https://doi.org/10.1134/S0031030121070042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030121070042

Keywords:

Navigation