Skip to main content
Log in

Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the size and volume fraction of Ti3N4 particles in Ti-(50.3–51.5) at % Ni single crystals on their martensitic transformation temperatures and temperature hysteresis is studied. Aging at T = 673−823 K leads to a nonmonotonic change in the martensitic transformation temperatures and temperature hysteresis, which is related to a change in the Ni concentration in the matrix, the hardening of the high-temperature phase, a change in the elastic and surface energies generated upon the martensitic transformations, and the internal stresses that appear because of the difference in the lattice parameters of the particles and the matrix. As a result of the high strength of the B2 phase and the high elastic and surface energies that are generated upon the martensitic transformations due to the precipitation of particles of size d < 40 nm at an interparticle distance λ< 50 nm, the martensitic transformation temperatures decrease down to the suppression of the R-B19′ transitions upon cooling to 77 K. A thermodynamic description for the martensitic transformations in heterophase crystals is proposed, and an analogy between the martensitic transformations in heterophase Ti-Ni single crystals with nanoparticles of size d = 20–100 nm and those in single-phase Ti-Ni polycrystals with a grain size of 50–200 nm is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shape Memory Materials, Ed. by K. Otsuka and C. M. Wayman (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  2. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransition Phenomena and Martensitic Transformations (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1998) [in Russian].

    Google Scholar 

  3. K. Otsuka and X. Ren, “Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys,” Progr. Mater. Sci. 50, 511–678 (2005).

    Article  CAS  Google Scholar 

  4. E. Hornbogen, V. Mertinger, and D. Wurzel, “Microstructure and Tensile Properties of Two Binary Ni-Ti-Alloys,” Scr. Mater. 44, 171–178 (2001).

    Article  CAS  Google Scholar 

  5. T. Waitz, T. Antretter, F. D. Fischer, et al., “Size Effects on the Martensitic Phase Transformation of NiTi Nanograins,” J. Mech. Phys. Solids 55, 419–444 (2007).

    Article  ADS  CAS  MATH  Google Scholar 

  6. M. Nishida, C. M. Wayman, and A. Chiba, “Electron Microscopy Studies of Martensitic Transformation of an Aged Ti-51 at. % Ni Shape Memory Alloy,” Metallography, No. 21, 275–291 (1988).

  7. M. Nishida, C. M. Wayman, and T. Honma, “Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys,” Metall. Trans. A 17, 1505–1515 (1986).

    Article  Google Scholar 

  8. G. Fan, Y. Zhou, W. Chen, et al., “Precipitation Kinetics of Ti3Ni4 in Polycrystalline Ni-Rich Ti-Ni Alloys and Its Relation to Abnormal Multi-Stage Transformation Behavior,” Mater. Sci. Eng., A 438–440, 622–626 (2006).

    Google Scholar 

  9. G. Fan, W. Chen, S. Yang, et al., “Origin of Abnormal Multi-Stage Martensitic Transformation Behavior in Aged N-Rich Ti-Ni Shape Memory Alloys,” Acta Mater. 52, 4351–4362 (2004).

    Article  CAS  Google Scholar 

  10. L. Bataillard, J.-E. Bidaux, and R. Gotthardt, “Interaction between Microstructure and Multiple-Step Transformation in Binary NiTi Alloys Using In-Situ Transmission Electron Microscopy Observations,” Philos. Mag. A 78(2), 327–344 (1998).

    Article  ADS  CAS  Google Scholar 

  11. J. Michutta, Ch. Somsen, A. Yawny, et al., “Elementary Martensitic Transformation Processes in Ni-Rich NiTi Single Crystals with Ni4Ti3 Precipitates,” Acta Mater. 54, 3525–3542 (2006).

    Article  CAS  Google Scholar 

  12. M. C. Carroll, Ch. Somsen, and G. Eggeler, “Multiple-Step Martensitic Transformations in Ni-Rich NiTi Shape Memory Alloys,” Scr. Mater. 50, 187–192 (2004).

    Article  CAS  Google Scholar 

  13. A. Dlouhy, J. Khalil-Allafi, and G. Eggeler, “On the Determination of the Volume Fraction of Ti3Ni4 Precipitates in Binary Ni-Rich NiTi Shape Memory Alloys,” Z. Metallkd. 95, 518–524 (2004).

    CAS  Google Scholar 

  14. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, “Ni4Ti3-Precipitation during Aging of NiTi Shape Memory Alloys and Its Influence on Martensitic Phase Transformations,” Acta Mater. 52, 4351–4362 (2004).

    Article  CAS  Google Scholar 

  15. J. Ortin and A. Planes, “Thermodynamic Analysis of Thermal Measurements in Thermoelastic Martensitic Transformations,” Acta Mater. 36(8), 1873–1889 (1988).

    Article  CAS  Google Scholar 

  16. L. Daröczi, Z. Palänki, S. Szabö, and D. L. Beke, “Stress Dependence of Non-Chemical Free Energy Contributions in Cu-Al-Ni Shape Memory Alloy,” Mater. Sci. Eng., A 378, 274–277 (2004).

    Article  CAS  Google Scholar 

  17. W. Tang, B. Sundman, R. Sandstrom, and C. Qiu, “New Modeling of the B2 Phase and Its Associated Martensitic Transformation in the Ti-Ni System,” Acta Mater. 47(12), 3457–3468 (1999).

    Article  CAS  Google Scholar 

  18. E. Hornbogen, “The Effect of Variables on Martensitic Transformation Temperatures,” Acta Mater. 33(4), 595–601 (1985).

    Article  CAS  Google Scholar 

  19. Yu. I. Chumlyakov, I. V. Kireeva, I. Karaman, et al., “Orientational Dependence of Shape Memory Effects and Superelasticity in CoNiGa, NiMnGa, CoNiAl, FeNiCoTi, and TiNi Single Crystals,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 4–20 (2004).

  20. Yu. I. Chumlyakov, S. P. Efimenko, I. V. Kireeva, et al., “Effects of Shape Memory and Superelasticity in Aged TiNi Single Crystals,” Dokl. Ross. Akad. Nauk 381(5), 610–613 (2001) [Dokl. Phys. 46 (12), 849–852 (2001)].

    CAS  Google Scholar 

  21. V. V. Kokorin, Magnetic Transformations in Inhomogeneous Solid Solutions (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  22. T. Waitz, “The Self-Accommodated Morphology of Martensite in Nanocrystalline NiTi Shape Memory Alloys,” Acta Mater. 53, 2273–2283 (2005).

    Article  CAS  Google Scholar 

  23. A. F. Ashby, “The Deformation of Plastically Non-Homogeneous Materials,” Philos. Mag. 21, 399–424 (1970).

    Article  ADS  CAS  Google Scholar 

  24. A. M. Glezer, E. N. Blinova, V. A. Pozdnyakov, and A. V. Shelyakov, “Martensite Transformation in Nanoparticles and Nanomaterials,” J. Nanoparticle Res. 5, 551–560 (2003).

    Article  CAS  Google Scholar 

  25. K. Madangopal and J. Singh, “A Novel B19’ Martensite in Nickel Titanium Shape Memory Alloys,” Acta Mater. 48, 1325–1344 (2000).

    Article  Google Scholar 

  26. R. F. Hamilton, H. Sehitoglu, Y. H. J. Maier, and Y. I. Chumlykov, “Stress Dependence of the Hysteresis in Single Crystal NiTi Alloys,” Acta Mater. 52, 3383–3402 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.Yu. Panchenko, Yu.I. Chumlyakov, I.V. Kireeva, A.V. Ovsyannikov, H. Sehitoglu, I. Karaman, Y.H.J. Maier, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 106, No. 6, pp. 597–609.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchenko, E.Y., Chumlyakov, Y.I., Kireeva, I.V. et al. Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals. Phys. Metals Metallogr. 106, 577–589 (2008). https://doi.org/10.1134/S0031918X08120065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X08120065

PACS numbers

Navigation