Skip to main content
Log in

Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape-memory alloys

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

X-ray diffraction has been used to study shape-memory alloys of composition Ti-(49.73–51.05 at %) Ni subjected to quenching and thermomechanical treatment (TMT) by the scheme “cold deformation (e = 0.3–1.9) + postdeformation annealing (200–500°C) to provide different defectness of the parent B2 austenite. For the quenched alloys, the concentration dependences of the lattice parameters of the B19′ martensite, maximum lattice strain upon martensitic transformation, the crystallographic orientation of the lattice in single crystals, and the reserve of recoverable strain in polycrystals have been determined. The lattice parameters of martensite formed from polygonized, i.e., nanosubgranular, or from nanocrystalline austenite differ from the corresponding parameters of quenched martensite formed from recrystallized austenite, and their difference increases with increasing defectness of the parent-austenite lattice. An increase in the defectness of the austenite lattice is accompanied by a decrease in the reserve of recoverable strain. The deformation of the existing martensite or the formation of stress-assisted martensite under the anisotropic action of external stresses changes the interplanar spacing and the thermal expansion coefficient in different crystallographic directions but does not affect the averaged lattice parameters near the M s-M f interval and the reserve of recoverable strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duerig et al. (Butterworths, London, 1990).

    Google Scholar 

  2. Shape Memory Materials, Ed. by K. Otsuka and C. M. Wayman (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  3. Shape Memory Alloys: Fundamentals, Modeling and Applications, Ed. by V. Brailovski et al., (ETS Publ., Montreal, 2003).

    Google Scholar 

  4. Shape-Memory Titanium Nickelide Alloys. Ch. I, Ed. by V. G. Pushin (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  5. S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, “The Habit Plane and Transformation Strains Associated with the Martensitic Transformation in Ti-Ni Single Crystals,” Scr. Metall. 18, 883–888 (1984).

    Article  CAS  Google Scholar 

  6. T. Saburi, M. Yoshida, and S. Nenno, “Deformation Behavior of Shape Memory Ti-Ni Alloy Crystals” Scr. Metall. 18, 363–366 (1984).

    Article  CAS  Google Scholar 

  7. Shape Memory Effects and Their Application in Medicine, Ed. by L. A. Monasevich (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  8. S. D. Prokoshkin, V. Brailovskii, S. Turenne, I. Yu. Khmelevskaya, A. V. Korotitskii, and I. B. Trubitsyna, “On the Lattice Parameters of the B19′ Martensite in Binary Ti-Ni Shape-Memory Alloys,” Fiz. Met. Metalloved. 96(1), 62–71 (2003) [Phys. Met. Metallogr. 96 (1), 55–64 (2003)].

    CAS  Google Scholar 

  9. S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, S. Turenne, I. Yu. Khmelevskaua, and I. V. Trubitsyna, “On the Lattice Parameters of Phases in Binary Ti-Ni Shape Memory Alloys,” Acta Mater. 52, 4479–4492 (2004).

    Article  CAS  Google Scholar 

  10. S. D. Prokoshkin, A. V. Korotitskiy, V. M. Gundyrev, and V. I. Zeldovich, “Low-Temperature X-ray Diffraction Study of Martensite Lattice Parameters in Binary Ti-Ni Alloys,” Mater. Sci. Eng., A 481–482, 489–493 (2008).

    Google Scholar 

  11. K. Otsuka, T. Sawamura, and K. Shimizu, “Crystal Structure and Internal Defects of Equiatomic TiNi Martensite,” Phys. Status Solidi A 5, 457–470 (1971).

    Article  CAS  Google Scholar 

  12. K. Otsuka, T. Sawamura, K. Shimizu, and C. M. Wayman, “Characteristics of the Martensitic Transformation in TiNi and Memory Effect,” Metal. Trans. 2, 2583–2588 (1971).

    Article  CAS  Google Scholar 

  13. R. F. Hehemann and G. D. Sandrock, “Relations between the Premartensitic Instability and Martensite Structure,” Scr. Metall. 5, 801–806 (1971).

    Article  CAS  Google Scholar 

  14. T. Tadaki and C. M. Wayman, “Crystal Structure and Microstructure of a Cold-Worked TiNi Alloy with Unusual Elastic Behavior,” Scr. Metall. 14, 911–914 (1980).

    Article  CAS  Google Scholar 

  15. L. A. Monasevich and Yu. I. Paskal’, “Martensite-Martensite Transformation in Titanium Nickelide,” Fiz. Met. Metalloved. 49, 813–817 (1980).

    CAS  Google Scholar 

  16. G. M. Michal and R. Sinclair, “The Structure of TiNi Martensite,” Acta Crystallogr. 37, 1803–1807 (1981).

    Article  Google Scholar 

  17. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, “Crystal Structure of the Martensite in Ti-49.2 at % Ni Alloy by the Single Crystal X-ray Diffraction Method,” Acta Metall. 33, 2049–2056 (1985).

    Article  CAS  Google Scholar 

  18. V. N. Khachin, V. G. Pushchin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  19. Yu. P. Mironov and S. N. Kul’kov, “Study of Martensite Transformation in TiNi by X-ray Diffraction Movie Method,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 49–54 (1994).

  20. V. M. Gundyrev, V. I. Zeldovich, and G. A. Sobyanina, “Texture and Thermal Expansion Anomalies of B19’-Martensite in Tensile Deformed TiNi Shape Memory Alloys,” Textures Microstruct. 32, 71–81 (1999).

    Article  CAS  Google Scholar 

  21. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransition Effects and Martensite Transformations (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1998) [in Russian].

    Google Scholar 

  22. L. A. Monasevich, S. D. Borisova, and Yu. I. Paskal’, “Crystalgeometry of Structural Phase Transformations in Titanium Nickelide,” Deposited in Izv. Vyssh. Uchebn. Zaved., Fiz. Available from VINITI (Tomsk, 1979) [in Russian].

  23. A. S. Savinov, V. P. Sivokha, V. P. Voronin, and V. N. Khachin, “Structural Transformation in Titanium Nickelide-Based Alloys,” Deposited in Izv. Vyssh. Uchebn. Zaved., Fiz., Available from VINITI (Tomsk, 1984) [in Russian].

  24. P. Lukás, P. Šittner, D. Neov, V. Novák, D. Lugovyy and M. Tovar, “R-Phase Phenomena in Neutron Diffraction Investigation of Thermomechanically Loaded NiTi Polycrystals,” Mater. Sci. Forum 404–407, 835–840 (2002).

    Article  Google Scholar 

  25. S. D. Prokoshkin, V. Brailovski, S. Turenne, I. Y. Khmelevskaya, A. V. Korotitskiy, I. B. Trubitsyna, “Concentration, Temperature and Deformation Dependences of Martensite Lattice Parameters in Binary Ti-Ni Shape Memory Alloys,” J. Phys. IV 112, 651–654 (2003).

    CAS  Google Scholar 

  26. S. D. Prokoshkin, A. V. Korotitskiy, A. V. Tamonov, I. Y. Khmelevskaya, V. Brailovski, and S. Turenne, “Comparative X-ray and Time-of-Flight Neutron Diffraction Studies of Martensite,” Mater. Sci. Eng., A 438–440, 549–552 (2006).

    Google Scholar 

  27. J. Khalil-Allafi, W. W. Schmahl, M. Wagner, H. Sitepu, D. M. Tóbbens, and G. Eggeler, “The Influence of Temperature on Lattice Parameters of Coexisting Phases in NiTi Shape Memory Alloys—A Neutron Diffraction Study,” Mater. Sci. Eng., A 378, 161–164 (2004).

    Article  Google Scholar 

  28. A. Mehta, V. Imbeni, R. O. Ritchie, and T. W. Duerig, “On the Electronic and Mechanical Instabilities in Ni50.9Ti49.1,” Mater. Sci. Eng., A 378, 130–137 (2004).

    Article  Google Scholar 

  29. V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundations of Heat and Thermomechanical Treatments and Their Effect on the Structure and Properties of Titanium Nickelide-Based Alloys,” Phys. Met. Metalogr. 97(Suppl. 1). 3–55 (2004).

    Google Scholar 

  30. V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, K. E. Inaekyan, and V. Demers, “Structure and Properties of the Ti-50.0% Ni Alloy after Strain Hardening and Nanocrystallizing Thermomechanical Processing,” Mater. Trans. JIM 47, 795–804 (2006).

    Article  CAS  Google Scholar 

  31. S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, V. Demers, I. Khmelevskaya, S. Dobatkin, and E. Tatyanin, “Structure and Properties of Severely Cold-Rolled and Annealed Ti-Ni Shape Memory Alloys,” Mater. Sci. Eng., A 481–482, 114–118 (2008).

    Google Scholar 

  32. V. B. Fedorov, V. G. Kurdyumov, D. K. Khakimova, et al., “Effect of Dispersing upon Plastic Deformation of Titanium Nickelide,” Dokl. Akad. Nauk SSSR 269(4), 885–888 (1983).

    CAS  Google Scholar 

  33. H. Nakayama, K. Tsuchiya, and M. Umemoto, “Crystal Refinement and Amorphization by Cold Rolling in TiNi Shape Memory Alloys,” Scr. Mater. 44, 1781–1785 (2001).

    Article  CAS  Google Scholar 

  34. S. D. Prokoshkin, V. Brailovskii, I. Yu. Khmelevskaya, S. V. Dobatkin, K. E. Inaekyan, V. Yu. Turilina, V. Demers, and E. V. Tat’yanin, “Creation of Substructure and Nanostructure in Thermomechanical Treatment and Control of Functional Properties of Ti-Ni Alloys with Shape Memory Effect” Metalloved. Term. Obrab. Met., No. 5, 24–29 (2005) [Met. Sci. Heat Treat., 47(5–6), 182–187 (2005)].

  35. K. Tsuchiya, M. Inuzuka, D. Tomus, A. Hosokawa, H. Nakayama, K. Morii, Y. Todaka and M. Umemoto, “Martensitic Transformation in Nanostructural TiNi Shape Memory Alloy Formed Via Severe Plastic Deformation,” Mater. Sci. Eng., A 438–440, 643–648 (2006).

    Google Scholar 

  36. H. Sitepu and W. W. Schmahl, and R. B. von Dreele, “Use of Generalized Spherical Harmonic Model for Describing Crystallographic Texture in Polycrystalline NiTi Shape-Memory Alloy with Time-of-Flight Neutron Powder Diffraction Data,” Appl. Phys. A 74(Suppl.), p. 1676–1678 (2002).

    Article  Google Scholar 

  37. S. N. Kulkov and Yu. P. Mironov, “Martensitic Transformation in NiTi Investigated by Synchrotron X-ray Diffraction,” Nucl. Instrum. Methods Phys. Res., Sect. A 359, 165–169 (1995).

    Article  CAS  Google Scholar 

  38. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Spectroscopy and Electron-Optic Analysis (MISiS, Moscow, 2002) [in Russian].

    Google Scholar 

  39. A. V. Korotitskii, “Reserve of Recoverable Strain upon B2 → B19′ and β → α″ Transformations in Single Crystals and Polycrystals,” Fiz. Met. Metalloved. 112, (2011) (in press).

  40. V. N. Grishkov and A. I. Lotkov, “Martensitic Transformations in the Homogeneity Range of the TiNi Intermetallic Compound,” Fiz. Met. Metalloved. 60, 351–360 (1985).

    CAS  Google Scholar 

  41. K. N. Melton, “Ni-Ti Based Shape Memory Alloys,” in Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duerig et al. (Butterworths, London, 1990), p. 21–35.

    Google Scholar 

  42. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, “Ni4Ti3 Precipitation during Aging of NiTi Shape Memory Alloys and Its Influence on Martensitic Phase Transformations,” Acta Mater. 50, 4255–4274 (2002).

    Article  CAS  Google Scholar 

  43. T. Saburi, in: Shape Memory Materials, Ed. by K. Otsuka and C. M. Wayman (Cambridge Univ. Press., Cambridge, 1999), p. 49.

    Google Scholar 

  44. A. I. Lotkov and V. N. Grishkov, “Titanium Nickelide. Crystallographic Structure and Phase Transformations,” Izv. Vyssh. Uchebn. Zaved., Fiz. 27(5), 68–87 (1985).

    Google Scholar 

  45. M. Nishida, C. M. Wayman, and T. Honma, “Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys,” Metall. Trans. A 17, 1505–1515 (1986).

    Article  Google Scholar 

  46. S. D. Prokoshkin, V. Brailovskii, A. V. Korotitskii, K. E. Inaekyan, and A. M. Glezer, “Specific Features of the Formation of the Microstructure of Titanium Nickelide upon Thermomechanical Treatment Including Cold Plastic Deformation to Degrees from Moderate to Severe,” Fiz. Met. Metalloved. 110(3), 305–320 (2010) [Phys. Met. Metallogr. 110 (3), 289-302 (2010)].

    CAS  Google Scholar 

  47. T. Waitz, V. Kazykhanov, and H. P. Karnthaler, “Martensitic Phase Transformations in Nanocrystalline NiTi Studied by TEM,” Acta Mater. 52, 137–147 (2004).

    Article  CAS  Google Scholar 

  48. A. A. Il’in, N. N. Gozenko, V. I. Skvortsov, and A. S. Nikitich, “Structural Changes in Titanium Nickelide-Based Alloys upon Deformation and Their Effect on the Characteristics of Shape Restoration,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met, No. 4, 88–93 (1987).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, 2011, published in Fizika Metallov i Metallovedenie, 2011, Vol. 112, No. 2, pp. 180–198.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokoshkin, S.D., Korotitskiy, A.V., Brailovski, V. et al. Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape-memory alloys. Phys. Metals Metallogr. 112, 170–187 (2011). https://doi.org/10.1134/S0031918X11020244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X11020244

Keywords

Navigation