Skip to main content
Log in

Properties of Porous Ti–26Nb–6Mo–1.5Sn Alloy Produced via Powder Metallurgy for Biomedical Applications

  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess the possibility of producing porous Ti–26Nb–6Mo–1.5Sn (at %) alloy using combined mechanical alloying and sintering for potential biomedical application. The use of high energy ball milling method was helpful for initial synthesis of initial elements and for obtaining a powder with particulates of different grain size, which exerts an effect on the presence and different size of pores in the alloy. X-ray diffraction results confirmed the formation of the α nanocrystalline phase and the partially phase transformation from α phase to nanocrystalline β phase during high-energy ball milling process. During the sintering process of green compacts the phase transformation to the β phase and slightly change of the lattice parameters depending on the milling time are observed. The material was also tested by the nanointedation and tribological tests, the latter being considered as a first look at the mechanical properties of the material obtained by mechanical alloying. The samples—after sintering powder mixture previously milled for 40 h—exhibit the lowest reduced elastic modulus among the studied alloys. In the case of sliding tests in Ringer’s solution, the alloy specimens exhibited a surface deformation with some visible grooves, which indicates a greater fraction of abrasive wear component during the sliding test in Ringer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. He and M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus,” Mater. Sci. Eng., C 25, 290–295 (2005).

    Article  Google Scholar 

  2. J. I. Kim and H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at %) biomedical alloys,” Mater. Sci. Eng., A 403, 334–339 (2005).

    Article  Google Scholar 

  3. D. C. Zhang, J. G. Lin, W. J. Jiang, M. Ma, and Z. G. Peng, “Shape memory and superelastic behavior of Ti–7.5Nb–4Mo–1Sn alloy,” Mater. Des. 32, 4614–4617 (2011).

    Article  CAS  Google Scholar 

  4. T. Maeshima, S. Ushimaru, K. Yamauchi, and M. Nishida, “Effect of heat treatment on shape memory effect and superelasticity in Ti–Mo–Sn Alloys,” Mater. Sci. Eng., A 438–440, 844–847 (2006).

    Article  Google Scholar 

  5. E. Eisenbarth, D. Velten, M. Muller, and J. Breme, “Biocompatibility of beta-stabilizing elements of titanium alloys,” Biomaterials 25, 5705–5713 (2004).

    Article  CAS  Google Scholar 

  6. W. F. Ho, S. C. Wu, S. K. Hsu, Y. C. Li, and H. C. Hsu, “Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications,” Mater. Sci. Eng., C 32, 517–522 (2012).

    Article  CAS  Google Scholar 

  7. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).

    Article  Google Scholar 

  8. A. Biesiekierski, J. Wang, M. A. Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).

    Article  CAS  Google Scholar 

  9. M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1 (1), 30–42 (2008).

    Article  Google Scholar 

  10. C. Caparros, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J. A. Calero, C. Aparicio, M. Fernandez-Fairen, R. Perez, and F. J. Gil, “Bioactive macroporous titanium implants highly interconnected,” J. Mater. Sci. Mater. Med. 27 (10), 151 (2016).

    Article  Google Scholar 

  11. S. Kujala, J. Ryhanen, A. Danilov, and J. Tuukkanen, “Effect of Porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute,” Biomaterials 24 (25), 4691–4697 (2003).

    Article  CAS  Google Scholar 

  12. M. Karolus and J. Panek, “Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment,” J. Alloys Compd. 658, 709–715 (2016).

    Article  CAS  Google Scholar 

  13. R. B. Schwarz and C. C. Koch, “Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics,” Appl. Phys. Lett. 49 (3), 146–148 (1986).

    Article  CAS  Google Scholar 

  14. G. Dercz, I. Matula, M. Zubko, A. Kazek-Kesik, J. Maszybrocka, W. Simka, J. Dercz, P. Swiec, I. Jendrzejewska, “Synthesis of porous Ti–50Ta alloy by powder metallurgy,” Mater. Charact. 142, 124–136 (2018).

    Article  CAS  Google Scholar 

  15. G. Dercz and I. Matula, “Effect of ball milling on the properties of the porous Ti–26Nb alloy for biomedical applications,” Mater. Tehnol. 51, 795–803 (2017).

    Article  CAS  Google Scholar 

  16. Y. Torres, J. J. Pavon, and I. Nieto, J. A. Rodriguez, “Conventional powder metallurgy process and characterization of porous titanium for biomedical applications,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 42, 891–900 (2011).

    CAS  Google Scholar 

  17. G. Dercz, I. Matula, M. Zubko, and J. Dercz, “Phase composition and microstructure of new Ti–Ta–Nb–Zr biomedical alloys prepared by mechanical alloying method,” Powder Diffr. 32 (Suppl. 1), S186–S192 (2017).

    Article  CAS  Google Scholar 

  18. D. B. Wiles and R. A. Young, “A New Computer Program for Rietveld Analysis of X-Ray Powder Diffraction Patterns,” J. Appl. Crystallogr. 14, 149–151 (1981).

    Article  CAS  Google Scholar 

  19. R. J. Hill and C. J. Howard, “IUCr, quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467–474 (1987).

    Article  CAS  Google Scholar 

  20. G. Dercz, D. Oleszak, K. Prusik, and L. Pajak, “Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phases,” Rev.Adv. Mater. Sci. 18, 764–768 (2008).

    Google Scholar 

  21. G. Williamson and W. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall. 1 (1), 22–31 (1953).

    Article  CAS  Google Scholar 

  22. G. Dercz, I. Matula, M. Zubko, and A. Liberska, “Structure characterization of biomedical Ti–Mo–Sn alloy prepared by mechanical alloying method,” Acta Phys. Pol. A 130, 1029–1032 (2016).

    Article  CAS  Google Scholar 

  23. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46 (1–2), 1–184 (2001).

    Article  CAS  Google Scholar 

  24. V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials,” Mater. Charact. 58, 883–891 (2007).

    Article  CAS  Google Scholar 

  25. C. Salvo, C. Aguilar, R. Cardoso-Gil, A. Medina, L. Bejar, and R. V. Mangalaraja, “Study on the microstructural evolution of Ti-niobium based alloy obtained by high-energy ball milling,” J. Alloys Compd. 720, 254–263 (2017).

    Article  CAS  Google Scholar 

  26. G. Dercz, L. Pajak, and B. Formanek, “Dispersion analysis of NiAl–TiC–Al2O3 composite powder ground in a high-energy attritorial mill,” J. Mater. Process. Technol. 175, 334–337 (2006).

    Article  CAS  Google Scholar 

  27. C. Aguilar, P. Guzman, S. Lascano, C. Parra, L. Bejar, A. Medina, D. Guzman, “Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying,” J. Alloys Compd. 670, 346–355 (2016).

    Article  CAS  Google Scholar 

  28. G. Dercz, K. Prusik, L. Pajak, T. Goryczka, B. Formanek, “X-ray studies on NiAl–Cr3C2–Al2O3 composite powder with nanocrystalline NiAl phase,” J. Alloys Compd. 423, 112–115 (2006).

    Article  CAS  Google Scholar 

  29. G. Dercz, B. Formanek, K. Prusik, and L. Pajak, “Microstructure of Ni(Cr)–TiC–Cr3C2–Cr7C3 composite powder,” J. Mater. Process. Technol. 162–163, 15–19 (2005).

    Article  Google Scholar 

  30. L. M. R. de Vasconcellos, D. O. Leite, F. N. de Oliveira, Y. R. Carvalho, and C. A. A. Cairo, “Evaluation of bone ingrowth into porous titanium implant: Histomorphometric analysis in rabbits,” Braz. Oral Res. 24, 399–405 (2010).

    Article  Google Scholar 

  31. A. I. Itälä, H. O. Ylanen, C. Ekholm, K. H. Karlsson, and H. T. Aro, “Pore diameter of more than 100 µm is not requisite for bone ingrowth in rabbits,” J. Biomed. Mater. Res. 58, 679–683 (2001).

    Article  Google Scholar 

  32. Y. V. Milman, A. A. Golubenko, and S. N. Dub, “Indentation size effect in nanohardness,” Acta Mater. 59, 7480–7487 (2011).

    Article  CAS  Google Scholar 

  33. I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Mater. 54, 2049–2056 (2006).

    Article  CAS  Google Scholar 

  34. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants—A review,” Prog. Mater. Sci 54, 397–425 (2009).

    Article  CAS  Google Scholar 

  35. W. Waldhauser, J. M. Lackner, M. Kot, and B. Major, “Dry and ringer solution lubricated tribology of thin osseoconductive metal oxides and diamond-like carbon films,” Arch. Metall. Mater. 60, 2139–2144 (2015).

    Article  CAS  Google Scholar 

  36. X. Li and U. Olofsson, “A Study on friction and wear reduction due to porosity in powder metallurgic gear materials,” Tribol. Int. 110, 86–95 (2017).

    Article  CAS  Google Scholar 

  37. Y.-S. Lee, M. Niinomi, M. Nakai, K. Narita, and K. Cho, “Differences in wear behaviors at sliding contacts for β-type and (α + β)-type titanium alloys in Ringer’s solution and air,” Mater. Trans. 56, 317–326 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Polish National Science Centre (Polish: Narodowe Centrum Nauki, abbr. NCN) under the research project no. 2011/03/D/ST8/04884 and no. 2016/23/N/ST8/03809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dercz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dercz, G., Matuła, I. & Maszybrocka, J. Properties of Porous Ti–26Nb–6Mo–1.5Sn Alloy Produced via Powder Metallurgy for Biomedical Applications. Phys. Metals Metallogr. 120, 1384–1391 (2019). https://doi.org/10.1134/S0031918X19130040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19130040

Keywords:

Navigation