Skip to main content
Log in

DFT study of the structure and stability of Pu(III) and Pu(IV) chloro complexes

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structural characteristics and energies of PuCl n (3 − n)+ and PuCl n (4 − n)+ complexes (n = 2–8) have been studied by the density functional theory (DFT) method in the SVWN5 local functional approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Serp, R. J. M. Konings, R. Malmbeck, et al., Electroanal. Chem. Interfacial Electrochem. 561, 143 (2004).

    Article  CAS  Google Scholar 

  2. D. Lambertin, S. Chedhomme, G. Bourges, et al., J. Nucl. Mater. 341, 124 (2005).

    Article  CAS  Google Scholar 

  3. O. Shirai, H. Yamana, and Y. Arai, J. Alloys Compd. 408–412, 1267 (2006).

    Article  Google Scholar 

  4. G. Bourges, D. Lambertin, S. Rochefort, et al., J. Alloys Compd. 444–445, 404 (2007).

    Article  Google Scholar 

  5. J. L. Swanson, J. Phys. Chem. 68, 438 (1964).

    Article  CAS  Google Scholar 

  6. S. I. Nikitenko and P. Moisy, Inorg. Chem. 45(3), 1235 (2006).

    Article  CAS  Google Scholar 

  7. R. Morrey and R. H. Moore, J. Phys. Chem. 67, 748 (1963).

    Article  CAS  Google Scholar 

  8. R. H. Moore, J. Chem. Eng. Data 9, 502 (1964).

    Article  CAS  Google Scholar 

  9. P. Masset, R. J. M. Konings, R. Malmbeck, et al., J. Nucl. Mater. 344, 173 (2005).

    Article  CAS  Google Scholar 

  10. O. Benes and R. J. M. Konings, J. Nucl. Mater., 375, 202 (2008).

    Article  CAS  Google Scholar 

  11. D. Lecarpentier and J. Vergnes, Nucl. Eng. Des., 216, 43 (2002).

    Article  Google Scholar 

  12. E. Shwageraus, P. Hejzlar, and M. S. Kazimi, Nucl. Tech. 147, 53 (2004).

    CAS  Google Scholar 

  13. T. Inoue, Progr. Nucl. Energy 40, 547 (2002).

    Article  CAS  Google Scholar 

  14. H. Moriyama, D. Yamada, K. Moritani, et al., J. Alloys Compd. 408–412, 1003 (2006).

    Article  Google Scholar 

  15. Y. Sakamura, T. Inoue, T. Iwai, and H. Moriyama, J. Nucl. Mater. 340, 39 (2005).

    Article  CAS  Google Scholar 

  16. Y. Sakamura, T. Hijikata, K. Kinoshita, et al., J. Alloys Compd. 271–273, 592 (1998).

    Article  Google Scholar 

  17. Y. Sakamura, O. Shirai, T. Iwai, et al., J. Alloys Compd. 321, 76 (2001).

    Article  CAS  Google Scholar 

  18. K. Kinoshita, T. Koyama, T. Inoue, et al., J. Phys. Chem. Solids 66, 619 (2005).

    Article  CAS  Google Scholar 

  19. T. Kato, T. Inoue, T. Iwai, et al., J. Nucl. Mater. 357, 105 (2006).

    Article  CAS  Google Scholar 

  20. N. Kaltsoyannis and B. E. Bursten, Inorg. Chem. 34, 2735 (1995).

    Article  CAS  Google Scholar 

  21. Y. K. Han and K. Hirao, J. Chem. Phys. 113, 7345 (2000).

    Article  CAS  Google Scholar 

  22. M. Straka, P. Hrobarik, and M. Kaupp, J. Am. Chem. Soc. 127, 2591 (2005).

    Article  CAS  Google Scholar 

  23. D. Yamada, T. Murai, K. Moritani, et al., J. Alloys Compd. 444–445, 557 (2007).

    Article  Google Scholar 

  24. B. A. Nadykto and L. F. Timofeeva, Plutonium. Fundamental Problems (IPK FGUP RFYaTs-VNIIEF, Sarov, 2003), Vol. 2, p. 384 [in Russian].

    Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E.01, Gaussian, Inc., Walligford, CT, 2005.

    Google Scholar 

  26. H. B. Schlegel, Modern Electronic Structure Theory, Ed. by D. R. Yarkony (World Scientific, Singapore, 1995), pp. 459–500.

    Chapter  Google Scholar 

  27. P. J. Hay and R. L. Martin, J. Chem. Phys. 109, 3875 (1998).

    Article  CAS  Google Scholar 

  28. T. H. Dunning, Jr. and P. J. Hay, Modern Theoretical Chemistry, Ed. by H. F. Schaefer (Plenum, New York, 1976), vol. 3, p. 1.

    Google Scholar 

  29. V. Yu. Buz’ko, Kh. B. Kushkhov, M. B. Buz’ko, and V. T. Panyushkin, Russ. J. Inorg. Chem. 53, 1778 (2008).

    Article  Google Scholar 

  30. L. Gagliardi, A. Willetts, C. K. Skylaris, et al., J. Am. Chem. Soc. 120, 11727 (1998).

    Article  CAS  Google Scholar 

  31. S. Tsushima and T. Yang, Chem. Phys. Lett. 401, 68 (2005).

    Article  CAS  Google Scholar 

  32. V. Vetere, C. Adamo, and P. Maldivi, Chem. Phys. Lett. 325, 99 (2000).

    Article  CAS  Google Scholar 

  33. M. Hargittai, Chem. Rev. 100, 2233 (2000).

    Article  CAS  Google Scholar 

  34. G. S. Picard, F. C. Bouyer, M. Leroy, et al., J. Mol. Struct. (Theochem.) 386, 67 (1996).

    Article  Google Scholar 

  35. S. Hazebroucq, G. S. Picard, and C. Adamo, J. Chem. Phys. 122, 224512 (2005).

    Article  Google Scholar 

  36. V. Yu. Buz’ko, Kh. B. Kushkhov, and M. B. Buz’ko, Russ. J. Inorg. Chem. 55, 395 (2010).

    Article  Google Scholar 

  37. R. B. King, Coord. Chem. Rev. 197, 141 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Buz’ko.

Additional information

Original Russian Text © V.Yu. Buz’ko, G.Yu. Chuiko, Kh.B. Kushkhov, 2012, published in Zhurnal Neorganicheskoi Khimii, 2012, Vol. 57, No. 1, pp. 68–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buz’ko, V.Y., Chuiko, G.Y. & Kushkhov, K.B. DFT study of the structure and stability of Pu(III) and Pu(IV) chloro complexes. Russ. J. Inorg. Chem. 57, 62–67 (2012). https://doi.org/10.1134/S0036023612010056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023612010056

Keywords

Navigation