Skip to main content
Log in

Sol—Gel Synthesis and Structure Formation of Manganese Zirconium (Titanium) Phosphates

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Compounds Mn0.5Ti2(PO4)3 and Mn0.5Zr2(PO4)3 and Mn0.5+2xZr2 – x(PO4)3 (0 < x ≤0.35) solid solution were prepared by two variants of the sol-gel method using inorganic and organic reagents and were characterized using X-ray diffraction and IR spectroscopy. Mn0.5Ti2(PO4)3, a compound with an NaZr2(PO4)3 (NZP) structure, is formed at 600°C and is stable up to 950°C. Mn0.5Zr2(PO4)3 has dimorphism; its low-temperature phase having the Sc2(WO4)3 (SW) structure was prepared at 650°C, and the high-temperature NZP phase, at 1200°C. Mn0.5 + 2xZr2−x(PO4)3 solid solution crystallizes in an SW-type structure; it is thermally unstable at temperatures above 900°C. The thermal stability of samples decays as x rises. p ]The numbers of the stretching and bending vibrations in an \({\rm{PO}}_4^{3 - }\) ion in the IR spectra of NZP and SW ortho-phosphates agree with factor-group analysis for space group R3̅ and P21/n. Structure refinement was carried out for the low-temperature Mn0.5Zr2(PO4)3 phase (space group P21/n, a = 8.861(3) Å, b = 8.869(2) Å, c = 12.561(3) Å, β = 89.51(2)°) and for the solid solution. The basis of the structures is a framework built of corner-sharing tetrahedra PO4 and octahedra ZrO6 or (Mn,Zr)O6. The framework interstices are occupied by cations Mn2+ in tetrahedral oxygen coordination. A comparative crystal-chemical analysis of the morpho-tropic series of M0.5Zr2(PO4)3 phosphates (M stands for a metal in the oxidation state +2) elucidated a relationship between structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Pet’kov, A. I. Orlova, G. I. Dorokhova, and Ya. V. Fedotova, Crystallogr. Repts. 45, 36 (2000).

    Google Scholar 

  2. V. I. Pet’kov, V. S. Kurazhkovskaya, A. I. Orlova, and M. L. Spiridonova, Crystallogr. Repts. 47, 736 (2002).

    Article  CAS  Google Scholar 

  3. E. A. Asabina, I. O. Glukhova, V. I. Pet’kov, et al., Russ. J. Gen. Chem. 87, 684 (2017). doi https://doi.org/10.1134/S1070363217040041

    Article  CAS  Google Scholar 

  4. S. Barth, R. Olazcuaga, P. Gravereau, et al., Mater. Lett. 16, 96 (1993). https://doi.org/10.1016/0167-577X(93)90031-R.

    Article  CAS  Google Scholar 

  5. R. Olazcuaga, G. Le Flem, A. Boireau, and J. L. Soubey-roux, Adv. Mater. Res. 1–2, 177 (1994). https://doi.org/10.4028/www.scientific.net/AMR.1-2.177.

    Article  Google Scholar 

  6. V. I. Pet’kov, E. V. Zhilkin, E. A. Asabina, and E.Yu. Borovikova, Russ. J. Inorg. Chem. 59, 1087 (2014). doi https://doi.org/10.1134/S003602361410012X

    Article  CAS  Google Scholar 

  7. R. Olazcuaga and J. M. Dance, “Le Flem G. Et Al,” J. Solid State Chem. 143, 224 (1999). https://doi.org/10.1006/jssc.1998.8097.

    Article  CAS  Google Scholar 

  8. J. Derouet, L. Beaury, P. Porcher, et al., J. Solid State Chem. 143, 230 (1999). https://doi.org/10.1006/jssc.1998.8098.

    Article  CAS  Google Scholar 

  9. R. Essehli, B. El Bali, S. Benmokhtar, et al., Mater. Res. Bull. 44, 1502 (2009). https://doi.org/10.1016/j.materresbull.2009.02.013.

    Article  CAS  Google Scholar 

  10. M. Schöneborn and R. Glaum, Z. Anorg. Allg. Chem. 634, 1843 (2008). https://doi.org/10.1002/zaac.200800186.

    Article  CAS  Google Scholar 

  11. S. Benmokhtar, A. El Jazouli, A. Aatiq, et al., J. Solid State Chem. 180, 2004 (2007). doi https://doi.org/10.1016/j.jssc.2007.04.014

    Article  CAS  Google Scholar 

  12. A. Aatiq, M. Menetrier, A. El Jazouli, and C. Delmas, Solid State Ionics 150, 391 (2002). doi https://doi.org/10.1016/S0167-2738(02)00135-2

    Article  CAS  Google Scholar 

  13. S. Senbhagaraman, RowT. N. Guru, and A. M. Umarji, J. Mater. Chem. 3, 309 (1993). doi https://doi.org/10.1039/JM9930300309

    Article  CAS  Google Scholar 

  14. A. El Bouari and A. El Jazouli, Phosphorus Res. Bull 15, 136 (2004). doi https://doi.org/10.3363/prb1992.15.0_136

    Article  CAS  Google Scholar 

  15. D. A. Woodcock, P. Lightfoot, and R. I. Smith, J. Mater. Chem. 9, 2631 (1999). doi https://doi.org/10.1039/A903489G

    Article  CAS  Google Scholar 

  16. A. El Jazouli, J. L. Soubeyroux, J. M. Dance, and G. Le Flem, J. Solid State Chem. 65, 351 (1986). doi https://doi.org/10.1016/0022-4596(86)90107-6

    Article  CAS  Google Scholar 

  17. J.-P. Chaminade, A. El Bouari, A. El Jazouli, et al., Acta Crystallogr., Sect. A 61, C325 (2005). doi https://doi.org/10.1107/50108767305086186

    Article  Google Scholar 

  18. A. Mouline, M. Alami, R. Brochu, et al., Mater. Res. Bull. 35, 899 (2000). doi https://doi.org/10.1016/S0025-5408(00)00277-4

    Article  CAS  Google Scholar 

  19. R. Brochu, M. El-Yacoubi, M. Louer, et al., Mater. Res. Bull. 32, 15 (1997). doi https://doi.org/10.1016/S0025-5408(96)00162-6

    Article  CAS  Google Scholar 

  20. J. Alamo and J. L. Rodrigo, Solid State Ionics 63–65, 678 (1993). doi https://doi.org/10.1016/0167-2738(93)90178-6

    Article  Google Scholar 

  21. A. El Yacoubi, A. Mouline, M. Alami, et al., Phys. Chem. News 44, 76 (2008).

    CAS  Google Scholar 

  22. E. R. Gobechiya, Yu. K. Kabalov, V. I. Pet’kov, and M. V. Sukhanov, Crystallorg. Repts. 49, 741 (2004).

    Article  CAS  Google Scholar 

  23. V. I. Pet’kov, A. I. Orlova, and D. A. Kapranov, Russ. J. Inorg. Chem. 43, 1429 (1998).

    Google Scholar 

  24. V. I. Petkov and A. I. Orlova, J. Therm. Anal. Calom. 54, 71 (1998). https://doi.org/10.1023/A:1010156616525.

    Article  CAS  Google Scholar 

  25. M. Kinoshita, A. N. Fitch, Y. Piffard, et al., Eur. J. Solid State Inorg. Chem. 28, 683 (1991).

    Google Scholar 

  26. E. R. Gobechiya, M. V. Sukhanov, V. I. Pet’kov, and Yu. K. Kabalov, Crystallorg. Repts. 53, 53 (2008). doi https://doi.org/10.1134/S1063774508010069

    Article  CAS  Google Scholar 

  27. A. El Jazouli, M. Alami, R. Brochu, et al., J. Solid State Chem. 71, 444 (1987). doi https://doi.org/10.1016/0022-4596(87)90253-2

    Article  CAS  Google Scholar 

  28. K. Nomura, S. Ikeda, H. Masuda, and H. Einaga, Solid Electrolyte. Chem. Lett. 22, 893 (1993). doi https://doi.org/10.1246/cl.1993.893

    Google Scholar 

  29. K. Nomura, S. Ikeda, K. Ito, and H. Einaga, Bull. Chem. Soc. Jpn. 65, 3221 (1992). https://doi.org/10.1246/bcsj.65.3221.

    Article  CAS  Google Scholar 

  30. V. I. Pet’kov, A. I. Orlova, G. N. Kazantsev, et al., J. Therm. Anal. Calom. 66, 623 (2001). https://doi.org/10.1023/A:1013145807987.

    Article  Google Scholar 

  31. V. Pet’kov, E. Asabina, V. Loshkarev, and M. Sukha-nov, J. Nucl. Mater. 471, 122 (2016). doi https://doi.org/10.1016/j.jnucmat.2016.01.016

    Article  CAS  Google Scholar 

  32. S. N. Ienealem, S. G. Gul’yanova, T. K. Chekhlova, et al., Zh. Fiz. Khim. 74, 2273 (2000).

    Google Scholar 

  33. M. Sukhanov, V. Pet’lkov, M. Ermilova, et al., Phosphorus Res. Bull. 19, 90 (2005). https://doi.org/10.3363/prb1992.19.0_90.

    Article  CAS  Google Scholar 

  34. I. Shchelokov, E. Asabina, M. Sukhanov, et al., Solid State Sci. 10, 513 (2008). doi https://doi.org/10.1016/j.solidstate-sciences.2007.12.005

    Article  CAS  Google Scholar 

  35. A. I. Pylinina, I. I. Mikhalenko, M. M. Ermilova, et al., Russ. J. Phys. Chem. A. 84, 400 (2010). doi https://doi.org/10.1134/S0036024410030106

    Article  CAS  Google Scholar 

  36. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  CAS  Google Scholar 

  37. Y. I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994). doi https://doi.org/10.2109/jcersj.102.401

    Article  CAS  Google Scholar 

  38. F. Izumi, The Rietveld Method, Ed. by C. A. Young (Oxford Univ. Press, Oxford, 1993).

  39. V. I. Pet’kov, M. V. Sukhanov, A. S. Shipilov, et al., Inorg. Mater. 50, 263 (2014). doi https://doi.org/10.1134/S0020168514030091

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Additional information

Russian Text © V.I. Pet’kov, D.A. Lavrenov, M.V. Sukhanov, A.M. Koval’skii, E.Yu. Borovikova, 2019, published in Zhurnal Neorganicheskoi Khimii, 2019, Vol. 64, No. 2, pp. 137–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Lavrenov, D.A., Sukhanov, M.V. et al. Sol—Gel Synthesis and Structure Formation of Manganese Zirconium (Titanium) Phosphates. Russ. J. Inorg. Chem. 64, 170–178 (2019). https://doi.org/10.1134/S0036023619020165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619020165

Keywords

Navigation