Skip to main content
Log in

Investigation of single wall carbon nanotubes electrical properties and normal mode analysis: Dielectric effects

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Besides thermodynamic information, vibration can identify modes of a molecule by comparison of the spectroscopy and parameterize force field. By the application of group theory with the state of projection operators, a systematic method for getting the vibrational model of molecules such as the (3, 0), (4, 0), (5, 0) nanotubes was proposed. The U matrix from the combination of primitive’s harmonic vibrations was calculated and the effect of dielectric constants on the mechanism of these vibrations in nanotubes was studied. We found that in the high dielectrics the frequency of vibration has alternative behavior, however by the decreasing of the dielectrics, this behavior change to stable situation of geometry. The calculated data shown in Tables and Figures are in correspondence with some behavior of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Bethune, C. H. Kiang, M. S. deVries, et al., Nature 363, 605 (1993).

    Article  CAS  Google Scholar 

  2. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).

    Article  CAS  Google Scholar 

  3. Y. Saito, K. Hamaguchi, K. Hata, et al., Nature 389, 554 (1997).

    Article  CAS  Google Scholar 

  4. W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  Google Scholar 

  5. P. G. Collins, A. Zettl, H. Bando, et al., Science 278, 100 (1997).

    Article  CAS  Google Scholar 

  6. M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B 57, R4277 (1998).

    Article  Google Scholar 

  7. J. Y. Huang, S. Chen, Z. F. Ren, et al., Nanolett. 6, 1699 (2006).

    CAS  Google Scholar 

  8. Z. Y. Zhou, M. Steigerwald, M. Hybertsen, et al., J. Am. Chem. Soc. 126, 3597 (2004).

    Article  CAS  Google Scholar 

  9. V. Barone, J. E. Peralta, M. Wert, et al., Nanolett. 5, 1621 (2005).

    CAS  Google Scholar 

  10. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 195, 537 (1992).

    Article  CAS  Google Scholar 

  11. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1991).

    Article  Google Scholar 

  12. M. Ouyang, J. L. Huang, and C. M. Lieber, Acc. Chem. Res. 35, 1018 (2002).

    Article  CAS  Google Scholar 

  13. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  CAS  Google Scholar 

  14. A. Hartschuh, H. N. Pedrosa, J. Peterson, et al., Chem. Phys. Chem. 6, 577 (2005).

    CAS  Google Scholar 

  15. P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon 33, 959 (1995).

    Article  CAS  Google Scholar 

  16. A. Jorio, R. Saito, J. H. Hafner, et al., Phys. Rev. Lett. 86, 1118 (2001).

    Article  CAS  Google Scholar 

  17. S. M. Bachilo, M. S. Strano, C. Kittrell, et al., Science 298, 2361 (2002).

    Article  CAS  Google Scholar 

  18. R. Pfeier, H. Kuzmany, Ch. Kramberger, et al., Phys. Rev. Lett. 90, 225501 (2003).

    Article  Google Scholar 

  19. J. Kurti, V. Solyomi, M. Kertesz, et al., Carbon 42, 971 (2004).

    Article  CAS  Google Scholar 

  20. J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, Phys. Rev. B 72, 205438 (2005).

    Article  Google Scholar 

  21. A. Jorio, C. Fantini, M. Pimenta, et al., Phys. Rev. B 71, 075401 (2005).

    Article  Google Scholar 

  22. M. S. Strano, C. A. Dyke, M. L. Usrey, et al., Science 301, 1519 (2003).

    Article  CAS  Google Scholar 

  23. P. Umek, J. W. Seo, K. Hernadi, et al., Chem. Mater. 15, 4751 (2003).

    Article  CAS  Google Scholar 

  24. H. Q. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku, J. Am. Chem. Soc. 125, 15174 (2003).

    Article  CAS  Google Scholar 

  25. J. L. Bahr, J. P. Yang, D. V. Kosynkin, et al., J. Am. Chem. Soc. 123, 6536 (2001).

    Article  CAS  Google Scholar 

  26. M. Holzinger, J. Abraha, P. Whelan, et al., J. Am. Chem. Soc. 125, 8566 (2003).

    Article  CAS  Google Scholar 

  27. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, et al., Chem. Phys. Lett. 296, 188 (1998).

    Article  CAS  Google Scholar 

  28. L. T. Cai, J. L. Bahr, Y. X. Yao, and J. M. Tour, Chem. Mater. 14, 4235 (2002).

    Article  CAS  Google Scholar 

  29. S. Banerjee and S. S. Wong, J. Phys. Chem. B 106, 12144 (2002).

    Article  CAS  Google Scholar 

  30. J. E. Herrera and D. E. Resasco, Chem. Phys. Lett. 376, 302 (2003).

    Article  CAS  Google Scholar 

  31. M. T. Martinez et al., Nanotechnology 14, 691 (2003).

    Article  CAS  Google Scholar 

  32. M. Monajjemi and L. Mahdavian, Bull. Chem. Soc. Ethiop. 22, 277 (2008).

    CAS  Google Scholar 

  33. M. Damnjanovic, I. Milosevic, T. Vukovic, and R. Sredanovic, Phys. Rev. B 60, 2728 (1999).

    Article  CAS  Google Scholar 

  34. M. Damnjanovic, T. Vukovic, and I. Milosevic, J. Phys. A: Math. Gen. 33, 6561 (2000).

    Article  Google Scholar 

  35. O. E. Alon, Phys. Rev. B 63, 201403R (2001).

    Article  Google Scholar 

  36. O. E. Alon, J. Phys.: Condens. Matter. 15, 2489 (2003).

    Article  Google Scholar 

  37. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Applications of Group Theory to the Physics of Condensed Matter (Springer, New York, 2006).

    Google Scholar 

  38. M. Damnjanovic, I. Milosevic, T. Vukovic, and R. Sredanovic, Phys. Rev. B 60, 2728 (1999).

    Article  CAS  Google Scholar 

  39. M. Damnjanovic, Phys. Lett. A 94, 337 (1983).

    Article  Google Scholar 

  40. Analytical Applications of Raman Spectroscopy, Ed. by M. J. Pelletier (Kaiser Opt. Syst., Ann Arbor, MI, 1999).

    Google Scholar 

  41. R. Satio, T. Takeya, T. Kimura, et al., Phys. Rev. B 57, 4145 (1998).

    Article  Google Scholar 

  42. HyperChem 7.0 (Hypecube Inc., Gainesville, FL, USA, 2001).

  43. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations; The Theory of Infrared and Raman Vibrational Spectra (McGraw_Hill, New York, 1955).

    Google Scholar 

  44. F. Albert, Chemical Application of Group Theory (Wiley-Intersci., New York, 1971).

    Google Scholar 

  45. L. Schafer and S. J. Cyvrin, J. Chem. Ed. 48, 295 (1971).

    Article  Google Scholar 

  46. D. P. Strommen and E. P. Lippincott, J. Chem. Ed. 48, 295 (1971).

    Article  Google Scholar 

  47. H. P. Fritzer, Match. 3, 21 (1977).

    CAS  Google Scholar 

  48. J. M. Alvarino, J. Chem. Ed. 55, 307 (1978).

    Article  CAS  Google Scholar 

  49. R. L. Flurry, Jr., J. Chem. Ed. 55, 638 (1979).

    Article  Google Scholar 

  50. D. P. Strommen, J. Chem. Ed. 56, 640 (1979).

    Article  CAS  Google Scholar 

  51. J. M. Alvarino and A. Chammoro, J. Chem. Ed. 57, 785 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lee.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, V.S., Nimmanpipug, P., Mollaamin, F. et al. Investigation of single wall carbon nanotubes electrical properties and normal mode analysis: Dielectric effects. Russ. J. Phys. Chem. 83, 2288–2296 (2009). https://doi.org/10.1134/S0036024409130184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024409130184

Keywords

Navigation