Skip to main content
Log in

Models of cluster formation in solutions of fullerenes

  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A review of experimental and theoretical studies of the formation and growth of clusters in solutions of fullerenes is given. General problems of fullerene cluster formation in solutions are considered. The main directions and goals of studies are specified. The experimental data on solutions with various polarities obtained by various methods, including visible and UV spectroscopy, dynamic light scattering, small-angle neutron scattering, mass spectrometry, transmission electron microscopy, etc., are generalized. The conditions of cluster formation and mechanism of cluster stabilization and the role played by clusters in certain effects observed in the corresponding systems are discussed. Cluster growth models are considered on the basis of nucleation theory for solutions of fullerenes with various polarities. It is shown that the description of the observed cluster state requires modification of the kinetic equations of the classic approach using the drop model of clusters. Modified kinetic equations with corrections for the mechanism of cluster stabilization are used to analyze cluster growth and related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).

    Article  Google Scholar 

  2. L. Dai, Carbon Nanotechnology, Ed. by L. Dai (Elsevier, 2006).

  3. M. Ozawa, M. Inakuma, M. Takahashi, et al., Adv. Mater. 19, 1201 (2007).

    Article  CAS  Google Scholar 

  4. A. W. Jensen, S. R. Wilson, and D. I. Schuster, Bioorg. Med. Chem. 4, 767 (1996).

    Article  CAS  Google Scholar 

  5. T. da Ros and M. Prato, Chem. Commun. 73, 663 (1999).

    Article  Google Scholar 

  6. S. R. Wilson, Chemistry, Physics, and Technology, Ed. by K. Kadish and R. Ruoff (New York, 2000).

  7. L. B. Piotrovskii, M. Yu. Eropkin, E. M. Eropkina, et al., Psikhofarmakol. Biol. Narkol. 7, 1548 (2007).

    Google Scholar 

  8. T. Tsuchiya, Y. Yamakoshi, and N. Miyata, Biochem. Biophys. Res. Commun. 206, 885 (1995).

    Article  CAS  Google Scholar 

  9. L. L. Dugan, D. M. Turetsky, C. Du, et al., Proc. Natl. Acad. Sci. USA 94, 9434 (1997).

    Article  CAS  Google Scholar 

  10. D. M. Guldi and K. D. Asmus, Rad. Phys. Chem. 56, 449 (1999).

    Article  CAS  Google Scholar 

  11. R. V. Bensasson, M. Brettreich, J. Frederiksen, et al., Free Rad. Biol. Med. 29, 26 (2000).

    Article  CAS  Google Scholar 

  12. E. Oberdörster, Environ. Health Perspect 112, 1058 (2004).

    Article  CAS  Google Scholar 

  13. S. H. Friedman, D. L. DeCamp, R. P. Sijbesma, et al., J. Am. Chem. Soc. 115, 6505 (1993).

    Article  Google Scholar 

  14. H. Tokuyama, S. Yamago, and E. Nakamura, J. Am. Chem. Soc. 115, 7918 (1993).

    Article  CAS  Google Scholar 

  15. Y. Iwamoto and Y. Yamakoshi, Chem. Commun. 54, 4805 (2006).

    Article  CAS  Google Scholar 

  16. Y. Yamakoshi, N. Umezawa, A. Ryu, et al., J. Am. Chem. Soc. 125, 12803 (2003).

    Article  CAS  Google Scholar 

  17. A. Ikeda, T. Sato, K. Kitamura, et al., Org. Biomol. Chem. 3, 2907 (2005).

    Article  CAS  Google Scholar 

  18. L. B. Piotrovsky, Mol. Mater. 13, 41 (2000).

    CAS  Google Scholar 

  19. L. B. Piotrovskii, K. N. Kozeletskaya, N. A. Medvedeva, et al., Vopr. Virusol., No. 3, 38 (2001).

  20. A. K. Sirotkin, L. B. Piotrovskii, L. N. Poznyakova, and O. I. Kiselev, Vopr. Biol., Med. Farm. Khim., No. 3, 21 (2005).

  21. V. N. Bezmel’nitsyn, A. B. Eletskii, and M. V. Okun’, Usp. Fiz. Nauk 168, 1195 (1998) [Sov. Phys. Usp. 41, 1091 (1998)].

    Article  Google Scholar 

  22. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).

    Article  CAS  Google Scholar 

  23. M. V. Korobov and A. L. Smith, Fullerenes: Chemistry, Physics, and Technology, Ed. by K. M. Kadish and R. S. Ruoff (Wiley, New York, 2000).

    Google Scholar 

  24. K. N. Semenov, O. V. Arapov, A. K. Pyartman, et al., Zh. Prikl. Khim. 80, 39 (2007) [Russ. J. Appl. Chem. 80, 38 (2007)].

    Google Scholar 

  25. K. N. Semenov, N. A. Charykov, A. K. Pyartman, et al., Zh. Fiz. Khim. 82, 843 (2008) [Russ. J. Phys. Chem. A 82, 728 (2008)].

    Google Scholar 

  26. K. N. Semenov, N. A. Charykov, and O. V. Arapov, Zh. Fiz. Khim. 82, 1483 (2008) [Russ. J. Phys. Chem. A 82, 1318 (2008)].

    Google Scholar 

  27. K. N. Semenov, N. A. Charykov, O. V. Arapov, and M. A. Trofimova, Zh. Fiz. Khim. 82, 2193 (2008) [Russ. J. Phys. Chem. A 82, 1975 (2008)].

    Google Scholar 

  28. M. Sano, K. Oishi, T. Ishi-i, and S. Shinkai, Langmuir 16, 3773 (2000).

    Article  CAS  Google Scholar 

  29. D. T. Lai, M. A. Neumann, M. Matsumoto, and J. Sunamoto, Chem. Lett. 29, 64 (2000).

    Article  Google Scholar 

  30. T. Andersson, K. Nilsson, and M. Sundahl, J. Chem. Soc. Chem. Commun. 8, 604 (1992).

    Article  Google Scholar 

  31. Y. Yamakoshi, T. Yagami, K. Fukuhara, et al., J. Chem. Soc. Chem. Commun. 10, 517 (1994).

    Article  Google Scholar 

  32. J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, Chem. Phys. Lett. 245, 571 (1995).

    Article  CAS  Google Scholar 

  33. B. Sitharaman, S. Asokan, I. Rusakova, et al., Nano Lett. 4, 1759 (2004).

    Article  CAS  Google Scholar 

  34. W. A. Scrivence and J. M. Tour, J. Am. Chem. Soc. 116, 4517 (1994).

    Article  Google Scholar 

  35. G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, et al., J. Chem. Soc. Chem. Commun. 11, 1281 (1995).

    Article  Google Scholar 

  36. S. Deguchi, R. G. Alargova, and K. Tsujii, Langmuir 17, 6013 (2001).

    Article  CAS  Google Scholar 

  37. M. V. Avdeev, A. A. Khokhryakov, T. V. Tropin, et al., Langmuir 20, 4363 (2004).

    Article  CAS  Google Scholar 

  38. P. Scharff, K. Risch, L. Carta-Abelmann, et al., Carbon 42, 1203 (2004).

    Article  CAS  Google Scholar 

  39. J. A. Brant, J. Labille, J. Y. Bottero, and M. R. Wiesner, Langmuir 22, 1794 (2006).

    Article  CAS  Google Scholar 

  40. O. V. Arapov, K. N. Semenov, N. A. Charykov, et al., Zh. Prikl. Khim. 79, 203 (2006) [Russ. J. Appl. Chem. 79, 201 (2006)].

    Google Scholar 

  41. V. A. Keskinov, A. K. Pyartman, N. A. Charykov, et al., Zh. Fiz. Khim. 82, 407 (2008) [Russ. J. Phys. Chem. A 82, 329 (2008)].

    Google Scholar 

  42. K. N. Semenov, N. A. Charykov, O. V. Arapov, et al., Zh. Fiz. Khim. 83, 72 (2009) [Russ. J. Phys. Chem. A 83, 59 (2009)].

    Google Scholar 

  43. R. J. Doome, S. Dermaut, A. Fonseca, et al., Fullerene Sci. Technol. 5, 1593 (1997).

    CAS  Google Scholar 

  44. X. Zhou, Fullerene Sci. Technol. 5, 285 (1997).

    CAS  Google Scholar 

  45. R. S. Ruoff, Nature 362, 140 (1993).

    Article  CAS  Google Scholar 

  46. P. A. Heiney, J. E. Fischer, A. R. McGhie, et al., Phys. Rev. Lett. 66, 2911 (1991).

    Article  CAS  Google Scholar 

  47. W. I. F. David, R. M. Ibberson, T. J. S. Dennis, et al., Europhys. Lett. 18, 219 (1992).

    Article  CAS  Google Scholar 

  48. M. V. Korobov, A. L. Mirakyan, N. V. Avramenko, and G. Olofsson, J. Phys. Chem. B 103, 1339 (1999).

    Article  CAS  Google Scholar 

  49. M. V. Korobov, A. L. Mirakian, N. V. Avramenko, et al., J. Phys. Chem. B 102, 3712 (1998).

    Article  CAS  Google Scholar 

  50. A. L. Smith, J. Phys. B 29, 4975 (1996).

    Article  CAS  Google Scholar 

  51. A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan, Appl. Phys. Lett. 59, 2109 (1991).

    Article  CAS  Google Scholar 

  52. S. Kazaoui, R. Ross, and N. Minami, Solid State Commun. 90, 623 (1994).

    Article  CAS  Google Scholar 

  53. T. Tomiyama, S. Uchiyama, and H. Shinohara, Chem. Phys. Lett. 264, 143 (1997).

    Article  CAS  Google Scholar 

  54. K. Lozano, A. Gaspar-Rosas, and E. V. Barrera, Carbon 40, 271 (2002).

    Article  CAS  Google Scholar 

  55. Q. Ying, J. Marecek, and B. Chu, Chem. Phys. Lett. 219, 214 (1994).

    Article  CAS  Google Scholar 

  56. Q. Ying, J. Marecek, and B. Chu, J. Chem. Phys. 101, 4 (1994).

    Google Scholar 

  57. T. Rudalevige, A. H. Francis, and R. Zand, J. Phys. Chem. A 102, 9797 (1998).

    Article  CAS  Google Scholar 

  58. S. Nath, H. Pal, and A. V. Sapre, Chem. Phys. Lett. 327, 143 (2000).

    Article  CAS  Google Scholar 

  59. G. Torok, V. T. Lebedev, and L. Cser, Phys. Solid State 44, 572 (2002).

    Article  CAS  Google Scholar 

  60. A. D. Bokare and A. Patnaik, J. Chem. Phys. 119, 4529 (2003).

    Article  CAS  Google Scholar 

  61. T. V. Tropin, M. V. Avdeev, and V. L. Aksenov, Fullerenes, Nanotubes Carbon Nanostruct. 16, 616 (2008).

    Article  CAS  Google Scholar 

  62. M. V. Avdeev, T. V. Tropin, V. L. Aksenov, et al., Poverkhnost’, No. 12, 3 (2008) [J. Surf. Invest. 83, 819 (2008)].

  63. M. V. Avdeev, T. V. Tropin, I. A. Bodnarchuk, et al., J. Chem. Phys. 132, 164515 (2010).

    Article  CAS  Google Scholar 

  64. D. Mandrus, M. Kele, R. L. Hettlich, et al., J. Phys. Chem. B 101, 123 (1997).

    Article  CAS  Google Scholar 

  65. M. Beck, Pure Appl. Chem. 70, 1881 (1998).

    Article  CAS  Google Scholar 

  66. K. A. Affholter, S. J. Henderson, G. D. Wignall, et al., J. Chem. Phys. 99, 9224 (1993).

    Article  CAS  Google Scholar 

  67. L. A. Girifalco, J. Phys. Chem. 96, 858 (1992).

    Article  CAS  Google Scholar 

  68. C. Gripon, L. Legrand, I. Rosenman, and F. Boue, Fullerenes, Nanotubes Carbon Nanostruct. 4, 1195 (1996).

    Article  CAS  Google Scholar 

  69. Y. B. Melnichenko, G. D. Wignall, R. N. Compton, and G. Bakale, J. Chem. Phys. 111, 4724 (1999).

    Article  CAS  Google Scholar 

  70. S. J. Henderson, Langmuir 13, 6139 (1997).

    Article  CAS  Google Scholar 

  71. F. Migliardo, V. Magazu, and M. Migliardo, J. Mol. Liq. 110, 3 (2004).

    Article  CAS  Google Scholar 

  72. C. Branca, V. Magazu, A. Mangione, et al., Diamond Rel. Mater. 13, 1333 (2004).

    Article  CAS  Google Scholar 

  73. S. J. Henderson, R. I. Hettich, R. N. Compton, and G. Bakale, J. Phys. Chem. 100, 5426 (1996).

    Article  CAS  Google Scholar 

  74. T. V. Tropin, M. V. Avdeev, V. L. Aksenov, and L. Rosta, BNC Progress Report 2002–2003 (KFKI, Budapest, 2004).

    Google Scholar 

  75. A. Mrzel, A. Mertelj, A. Omerzu, et al., J. Phys. Chem. 103, 11256 (1999).

    Article  CAS  Google Scholar 

  76. M. Alfe, B. Apicella, R. Barbarella, et al., Chem. Phys. Lett. 405, 193 (2005).

    Article  CAS  Google Scholar 

  77. S. Nath, H. Pal, D. K. Palit, et al., J. Phys. Chem. B 102, 10158 (1998).

    Article  CAS  Google Scholar 

  78. I. Baltog, M. Baibarac, L. Mihut, et al., Roman. Rep. Phys. 57, 837 (2005).

    CAS  Google Scholar 

  79. H. N. Ghosh, A. V. Sapre, and J. P. Mittal, J. Phys. Chem. 100, 9439 (1996).

    Article  CAS  Google Scholar 

  80. J. A. Nisha, M. Premila, V. Sridharan, et al., Carbon 36, 637 (1998).

    Article  CAS  Google Scholar 

  81. S. Nath, H. Pal, and A. V. Sapre, Chem. Phys. Lett. 360, 422 (2002).

    Article  CAS  Google Scholar 

  82. O. A. Kyzyma, M. V. Korobov, M. V. Avdeev, et al., Phys. Chem. Lett. (2010).

  83. Yu. F. Biryulin, N. P. Evlampieva, E. Yu. Melenevskaya, et al., Pis’ma Zh. Tekh. Fiz. 26, 39 (2000) [Tech. Phys. Lett. 26, 662 (2000)].

    Google Scholar 

  84. J. Cheng, Y. Fang, Q. Huang, et al., Chem. Phys. Lett. 330, 262 (2000).

    Article  CAS  Google Scholar 

  85. N. P. Yevlampieva, Yu. F. Biryulin, E. Yu. Melenevskaja, et al., Coll. Surf. A 209, 167 (2002).

    Article  CAS  Google Scholar 

  86. V. L. Aksenov, M. V. Avdeev, O. A. Kyzyma, et al., Kristallografiya 52, 501 (2007) [Crystallogr. Rep. 52, 479 (2007)].

    Google Scholar 

  87. O. A. Kyzyma, L. A. Bulavin, V. L. Aksenov, et al., Mater. Struct. 15, 17 (2008).

    CAS  Google Scholar 

  88. P. M. Allemand, A. Koch, F. Wudl, et al., J. Am. Chem. Soc. 113, 1050 (1991).

    Article  CAS  Google Scholar 

  89. R. J. Sension, A. Z. Szarka, G. R. Smith, and R. M. Hochstrasser, Chem. Phys. Lett. 185, 179 (1991).

    Article  CAS  Google Scholar 

  90. Y. Wang, J. Phys. Chem. 96, 764 (1992).

    Article  CAS  Google Scholar 

  91. O. A. Kyzyma, L. A. Bulavin, V. L. Aksenov, et al., Fullerenes, Nanotubes Carbon Nanostruct. 16, 610 (2008).

    Article  CAS  Google Scholar 

  92. V. L. Aksenov, M. V. Avdeev, D. Mihailovic, et al., in Electronic Properties of Novel Materials—Molecular Nanostructures, Ed. by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (AIP Conf. Proc., New York, 2001), Vol. 541, p. 66.

    Google Scholar 

  93. V. L. Aksenov, M. V. Avdeev, A. A. Timchenko, et al., Frontiers of Multifunctional Nanosystems, Ed. by E. Buzaneva and P. Scharff (Academic, Kluewer, Netherlands, 2002), p. 281.

    Google Scholar 

  94. V. L. Aksenov, M. V. Avdeev, T. V. Tropin, et al., Physica B 385–386, 795 (2006).

    Article  CAS  Google Scholar 

  95. O. A. Kyzyma, M. V. Avdeev, V. L. Aksenov, et al., Poverkhnost’, No. 12, 11 (2008).

  96. O. A. Kyzyma, M. V. Avdeev, V. I. Petrenko, and V. M. Garamus, GeNF Annual Report 2009 (GKSS, Geesthacht, 2009).

    Google Scholar 

  97. R. G. Alargova, S. Deguchi, and K. Tsujii, J. Am. Chem. Soc. 123, 10460 (2001).

    Article  CAS  Google Scholar 

  98. V. L. Aksenov, M. V. Avdeev, T. V. Tropin, et al., in Electronic Properties of Molecular Nanostructures, Ed. by H. N. Y. Kuzmany (AIP Conf. Proc., New York, 2005), Vol. 786, p. 37.

  99. V. L. Aksenov, T. V. Tropin, M. V. Avdeev, et al., Fiz. Elem. Chastits At. Yadra 36, 108 (2005) [Phys. Part. Nucl. 36, 52 (2005)].

    Google Scholar 

  100. V. L. Aksenov, M. V. Avdeev, T. V. Tropin, et al., J. Mol. Liq. 127, 142 (2006).

    Article  CAS  Google Scholar 

  101. J. W. Gibbs, Thermodynamical Works (Gostekhizdat, Moscow, Leningrad, 1950) [in Russian].

    Google Scholar 

  102. M. Volmer and A. Weber, Z. Phys. Chem. 119, 227 (1926).

    Google Scholar 

  103. M. Volmer, Kinetic Der Phasenbildung (Steinkopf, Dresden, Leipzig, 1926).

    Google Scholar 

  104. Ya. I. Frenkel’, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  105. Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942).

    Google Scholar 

  106. K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976).

    Article  CAS  Google Scholar 

  107. K. Binder, Phys. Rev. B 15, 4425 (1977).

    Article  CAS  Google Scholar 

  108. J. W. P. Schmelzer, G. Röpke, and V. B. Priezzhev, Ed. by Nucleation Theory and Applications (JINR, Dubna, 1999).

    Google Scholar 

  109. I. Gutzow and J. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization (Springer, Berlin, 1995).

    Google Scholar 

  110. M. V. Korobov, N. I. Ivanova, N. V. Kojemyiakina, et al., BNC Progress Report 2002–2003 (KFKI, Budapest, 2004).

    Google Scholar 

  111. T. V. Tropin, M. V. Avdeev, and V. L. Aksenov, Pis’ma Zh. Eksp. Teor. Fiz. 83, 467 (2006) [JETP Lett. 83, 399 (2006)].

    Google Scholar 

  112. V. L. Aksenov, T. V. Tropin, O. A. Kyzyma, et al., Fiz. Tverd. Tela 52, 992 (2010) [Phys. Solid State 52, 1059 (2010)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Avdeev.

Additional information

Original Russian Text © M.V. Avdeev, V.L. Aksenov, T.V. Tropin, 2010, published in Zhurnal Fizicheskoi Khimii, 2010, Vol. 84, No. 8, pp. 1405–1416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeev, M.V., Aksenov, V.L. & Tropin, T.V. Models of cluster formation in solutions of fullerenes. Russ. J. Phys. Chem. 84, 1273–1283 (2010). https://doi.org/10.1134/S0036024410080017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410080017

Keywords

Navigation